These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16821970)

  • 1. The effects of geometry on the hyperpolarizability.
    Kuzyk MG; Watkins DS
    J Chem Phys; 2006 Jun; 124(24):244104. PubMed ID: 16821970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the hyperpolarizability tensor using external electromagnetic fields and nuclear placement.
    Watkins DS; Kuzyk MG
    J Chem Phys; 2009 Aug; 131(6):064110. PubMed ID: 19691381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order nonlinear susceptibility.
    Kuzyk MG
    J Chem Phys; 2006 Oct; 125(15):154108. PubMed ID: 17059240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of electron interactions on the universal properties of systems with optimized off-resonant intrinsic hyperpolarizability.
    Watkins DS; Kuzyk MG
    J Chem Phys; 2011 Mar; 134(9):094109. PubMed ID: 21384952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental limits of the dispersion of the two-photon absorption cross section.
    Pérez Moreno J; Kuzyk MG
    J Chem Phys; 2005 Nov; 123(19):194101. PubMed ID: 16321070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of spatial distortions on the quadratic nonlinear optical properties of octupolar organic and metallo-organic molecules.
    Bidault S; Brasselet S; Zyss J; Maury O; Le Bozec H
    J Chem Phys; 2007 Jan; 126(3):034312. PubMed ID: 17249876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of near-infrared absorption and large second hyperpolarizability in oxyallyl diradicaloids: a three-state model approach.
    Yesudas K; Bhanuprakash K
    J Phys Chem A; 2007 Mar; 111(10):1943-52. PubMed ID: 17311369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of nonlinear optical properties by substituent position, geometry and symmetry of the molecule: An ab initio study.
    Davis D; Sreekumar K; Sajeev Y; Pal S
    J Phys Chem B; 2005 Jul; 109(29):14093-101. PubMed ID: 16852770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new dipole-free sum-over-states expression for the second hyperpolarizability.
    Pérez-Moreno J; Clays K; Kuzyk MG
    J Chem Phys; 2008 Feb; 128(8):084109. PubMed ID: 18315035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability.
    Suponitsky KY; Tafur S; Masunov AE
    J Chem Phys; 2008 Jul; 129(4):044109. PubMed ID: 18681636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear response properties of ultralarge hyperpolarizability twisted pi-system donor-acceptor chromophores. Dramatic environmental effects on response.
    Brown EC; Marks TJ; Ratner MA
    J Phys Chem B; 2008 Jan; 112(1):44-50. PubMed ID: 18067278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring biological membrane-potential changes: a CI QM/MM study.
    Rusu CF; Lanig H; Othersen OG; Kryschi C; Clark T
    J Phys Chem B; 2008 Feb; 112(8):2445-55. PubMed ID: 18247593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singly and doubly excited states of butadiene, acrolein, and glyoxal: Geometries and electronic spectra.
    Saha B; Ehara M; Nakatsuji H
    J Chem Phys; 2006 Jul; 125(1):014316. PubMed ID: 16863307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-branched dendritic dipolar nonlinear optical chromophores, more than three times a single-strand chromophore?
    Holtmann J; Walczuk E; Dede M; Wittenburg C; Heck J; Archetti G; Wortmann R; Kuball HG; Wang YH; Liu K; Luo Y
    J Phys Chem B; 2008 Nov; 112(47):14751-61. PubMed ID: 18973370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined molecular and supramolecular bottom-up nanoengineering for enhanced nonlinear optical response: experiments, modeling, and approaching the fundamental limit.
    Pérez-Moreno J; Asselberghs I; Song K; Clays K; Zhao Y; Nakanishi H; Okada S; Nogi K; Kim OK; Je J; Mátrai J; De Maeyer M; Kuzyk MG
    J Chem Phys; 2007 Feb; 126(7):074705. PubMed ID: 17328625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First- and second-order polarizabilities of simple merocyanines. An experimental and theoretical reassessment of the two-level model.
    Momicchioli F; Ponterini G; Vanossi D
    J Phys Chem A; 2008 Nov; 112(46):11861-72. PubMed ID: 18942806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching.
    Bradshaw DS; Andrews DL
    J Chem Phys; 2008 Apr; 128(14):144506. PubMed ID: 18412458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pairwise interactions between linear alkanes in water measured by AFM force spectroscopy.
    Ray C; Brown JR; Kirkpatrick A; Akhremitchev BB
    J Am Chem Soc; 2008 Jul; 130(30):10008-18. PubMed ID: 18597457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane.
    Mehta N; Datta SN
    J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametric two-electron reduced-density-matrix method applied to computing molecular energies and properties at nonequilibrium geometries.
    DePrince AE; Kamarchik E; Mazziotti DA
    J Chem Phys; 2008 Jun; 128(23):234103. PubMed ID: 18570487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.