These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16821986)

  • 1. Evaluation of phenomenological one-phase criteria for the melting and freezing of softly repulsive particles.
    Saija F; Prestipino S; Giaquinta PV
    J Chem Phys; 2006 Jun; 124(24):244504. PubMed ID: 16821986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase diagram of softly repulsive systems: the Gaussian and inverse-power-law potentials.
    Prestipino S; Saija F; Giaquinta PV
    J Chem Phys; 2005 Oct; 123(14):144110. PubMed ID: 16238377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase diagram of Gaussian-core nematics.
    Prestipino S; Saija F
    J Chem Phys; 2007 May; 126(19):194902. PubMed ID: 17523835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorph selection during the crystallization of softly repulsive spheres: the inverse power law potential.
    Desgranges C; Delhommelle J
    J Phys Chem B; 2007 Oct; 111(42):12257-62. PubMed ID: 17918891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.
    Noya EG; Vega C; Doye JP; Louis AA
    J Chem Phys; 2010 Jun; 132(23):234511. PubMed ID: 20572725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase diagram of the Gaussian-core model.
    Prestipino S; Saija F; Giaquinta PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):050102. PubMed ID: 16089510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagrams of hard-core repulsive Yukawa particles.
    Hynninen AP; Dijkstra M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021407. PubMed ID: 14524973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-liquid phase equilibria of the Gaussian core model fluid.
    Mausbach P; Ahmed A; Sadus RJ
    J Chem Phys; 2009 Nov; 131(18):184507. PubMed ID: 19916612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behavior of density-dependent pair potentials.
    Zhou S
    J Chem Phys; 2008 Mar; 128(10):104511. PubMed ID: 18345910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. I. Thermodynamic results.
    Sesé LM
    J Chem Phys; 2007 Apr; 126(16):164508. PubMed ID: 17477615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase diagram of model anisotropic particles with octahedral symmetry.
    Noya EG; Vega C; Doye JP; Louis AA
    J Chem Phys; 2007 Aug; 127(5):054501. PubMed ID: 17688343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory for the freezing of soft-core fluids.
    Archer AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051501. PubMed ID: 16383605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-entrant melting and freezing in a model system of charged colloids.
    Royall CP; Leunissen ME; Hynninen AP; Dijkstra M; van Blaaderen A
    J Chem Phys; 2006 Jun; 124(24):244706. PubMed ID: 16821995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing of Lennard-Jones-type fluids.
    Khrapak SA; Chaudhuri M; Morfill GE
    J Chem Phys; 2011 Feb; 134(5):054120. PubMed ID: 21303105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. II. Structural features.
    Sesé LM; Bailey LE
    J Chem Phys; 2007 Apr; 126(16):164509. PubMed ID: 17477616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting freezing for some repulsive potentials.
    Khrapak SA; Morfill GE
    Phys Rev Lett; 2009 Dec; 103(25):255003. PubMed ID: 20366260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting behavior of an idealized membrane model.
    Del Pópolo MG; Ballone P
    J Chem Phys; 2008 Jan; 128(2):024705. PubMed ID: 18205464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexatic phase and water-like anomalies in a two-dimensional fluid of particles with a weakly softened core.
    Prestipino S; Saija F; Giaquinta PV
    J Chem Phys; 2012 Sep; 137(10):104503. PubMed ID: 22979870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal features of the free-energy functional at the freezing transition for repulsive potentials.
    Verma A; Ford DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051110. PubMed ID: 21728493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.