These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 16822004)

  • 1. Basin topology in dissipative chaotic scattering.
    Seoane JM; Aguirre J; Sanjuán MA; Lai YC
    Chaos; 2006 Jun; 16(2):023101. PubMed ID: 16822004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal dimension in dissipative chaotic scattering.
    Seoane JM; Sanjuán MA; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016208. PubMed ID: 17677544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakly noisy chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032914. PubMed ID: 24125332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wada basins and chaotic invariant sets in the Hénon-Heiles system.
    Aguirre J; Vallejo JC; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066208. PubMed ID: 11736269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noisy scattering dynamics in the randomly driven Hénon-Heiles oscillator.
    Gan C; Yang S; Lei H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066204. PubMed ID: 21230720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic description of dissipative chaotic scattering.
    Burton LG; Dullin HR; Altmann EG
    Phys Rev E; 2023 Nov; 108(5-1):054223. PubMed ID: 38115440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative chaotic scattering.
    Motter AE; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015205. PubMed ID: 11800726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic mixing and transport in a meandering jet flow.
    Prants SV; Budyansky MV; Uleysky MY; Zaslavsky GM
    Chaos; 2006 Sep; 16(3):033117. PubMed ID: 17014222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple model of chaotic advection and scattering.
    Stolovitzky G; Kaper TJ; Sirovich L
    Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform resonant chaotic mixing in fluid flows.
    Solomon TH; Mezić I
    Nature; 2003 Sep; 425(6956):376-80. PubMed ID: 14508482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty dimension and basin entropy in relativistic chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MAF
    Phys Rev E; 2018 Apr; 97(4-1):042214. PubMed ID: 29758743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical explorations of R. M. Goodwin's business cycle model.
    Jakimowicz A
    Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of attractors formed by inertial particles in open chaotic flows.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Riemannian description of chaotic instability in Hamiltonian dynamics.
    Pettini M; Valdettaro R
    Chaos; 1995 Dec; 5(4):646-652. PubMed ID: 12780221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase space structure and chaotic scattering in near-integrable systems.
    Koch BP; Bruhn B
    Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-size effects on active chaotic advection.
    Nishikawa T; Toroczkai Z; Grebogi C; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026216. PubMed ID: 11863641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive dynamics of inertial particles in nonhyperbolic chaotic flows.
    Motter AE; Lai YC; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056307. PubMed ID: 14682884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global relativistic effects in chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MAF
    Phys Rev E; 2017 Mar; 95(3-1):032205. PubMed ID: 28415234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escaping from nonhyperbolic chaotic attractors.
    Kraut S; Grebogi C
    Phys Rev Lett; 2004 Jun; 92(23):234101. PubMed ID: 15245159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustering zones in the turbulent phase of a system of globally coupled chaotic maps.
    Maistrenko Y; Panchuk A
    Chaos; 2003 Sep; 13(3):990-8. PubMed ID: 12946192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.