These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16822020)

  • 1. Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map.
    Lomelí HE; Calleja R
    Chaos; 2006 Jun; 16(2):023117. PubMed ID: 16822020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteroclinic primary intersections and codimension one Melnikov method for volume-preserving maps.
    Lomeli HE; Meiss JD
    Chaos; 2000 Mar; 10(1):109-121. PubMed ID: 12779367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary homoclinic bifurcation theorems.
    Rom-Kedar V
    Chaos; 1995 Jun; 5(2):385-401. PubMed ID: 12780192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices.
    Giberti C; Vernia C
    Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric determination of classical actions of heteroclinic and unstable periodic orbits.
    Li J; Tomsovic S
    Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horseshoes in 4-dimensional piecewise affine systems with bifocal heteroclinic cycles.
    Wu T; Yang XS
    Chaos; 2018 Nov; 28(11):113120. PubMed ID: 30501220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using heteroclinic orbits to quantify topological entropy in fluid flows.
    Sattari S; Chen Q; Mitchell KA
    Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic scattering in solitary wave interactions: a singular iterated-map description.
    Goodman RH
    Chaos; 2008 Jun; 18(2):023113. PubMed ID: 18601480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple model of chaotic advection and scattering.
    Stolovitzky G; Kaper TJ; Sirovich L
    Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invariant manifolds and global bifurcations.
    Guckenheimer J; Krauskopf B; Osinga HM; Sandstede B
    Chaos; 2015 Sep; 25(9):097604. PubMed ID: 26428557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using periodic orbits to compute chaotic transport rates between resonance zones.
    Sattari S; Mitchell KA
    Chaos; 2017 Nov; 27(11):113104. PubMed ID: 29195324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melnikov-type method for a class of planar hybrid piecewise-smooth systems with impulsive effect and noise excitation: Heteroclinic orbits.
    Wei Z; Li Y; Moroz I; Zhang W
    Chaos; 2022 Oct; 32(10):103127. PubMed ID: 36319280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos and subharmonic bifurcations of a soft Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation.
    Zhou L; Chen F
    Chaos; 2021 Nov; 31(11):113133. PubMed ID: 34881616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient manifolds tracing for planar maps.
    Ciro D; Caldas IL; Viana RL; Evans TE
    Chaos; 2018 Sep; 28(9):093106. PubMed ID: 30278620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifurcations of nontwisted heteroclinic loop with resonant eigenvalues.
    Jin Y; Zhu X; Guo Z; Xu H; Zhang L; Ding B
    ScientificWorldJournal; 2014; 2014():716082. PubMed ID: 24892076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on "Sil'nikov chaos of the Liu system" [Chaos 18, 013113 (2008)].
    Algaba A; Fernández-Sánchez F; Merino M; Rodríguez-Luis AJ
    Chaos; 2011 Dec; 21(4):048101. PubMed ID: 22225398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction.
    Li J; Tomsovic S
    Phys Rev E; 2019 Mar; 99(3-1):032212. PubMed ID: 30999433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise and O(1) amplitude effects on heteroclinic cycles.
    Stone E; Armbruster D
    Chaos; 1999 Jun; 9(2):499-506. PubMed ID: 12779846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic heteroclinic networks as models of switching behavior in biological systems.
    Morrison M; Young LS
    Chaos; 2022 Dec; 32(12):123102. PubMed ID: 36587320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics.
    Koon WS; Lo MW; Marsden JE; Ross SD
    Chaos; 2000 Jun; 10(2):427-469. PubMed ID: 12779398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.