BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16822059)

  • 1. Novel optical detection system for in vivo identification and localization of cervical intraepithelial neoplasia.
    Schomacker KT; Meese TM; Jiang C; Abele CC; Dickson K; Sum ST; Flewelling RF
    J Biomed Opt; 2006; 11(3):34009. PubMed ID: 16822059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed confocal fluorescence imaging with a novel line scanning microscope.
    Wolleschensky R; Zimmermann B; Kempe M
    J Biomed Opt; 2006; 11(6):064011. PubMed ID: 17212534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy.
    Nordstrom RJ; Burke L; Niloff JM; Myrtle JF
    Lasers Surg Med; 2001; 29(2):118-27. PubMed ID: 11553898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hyperspectral fluorescence system for 3D in vivo optical imaging.
    Zavattini G; Vecchi S; Mitchell G; Weisser U; Leahy RM; Pichler BJ; Smith DJ; Cherry SR
    Phys Med Biol; 2006 Apr; 51(8):2029-43. PubMed ID: 16585843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.
    Sheikhzadeh F; Ward RK; Carraro A; Chen ZY; van Niekerk D; Miller D; Ehlen T; MacAulay CE; Follen M; Lane PM; Guillaud M
    Biomed Eng Online; 2015 Oct; 14():96. PubMed ID: 26499452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confocal microscopy: imaging cervical precancerous lesions.
    Carlson K; Pavlova I; Collier T; Descour M; Follen M; Richards-Kortum R
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S84-8. PubMed ID: 16143376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the clinical application of time-domain fluorescence lifetime imaging.
    Munro I; McGinty J; Galletly N; Requejo-Isidro J; Lanigan PM; Elson DS; Dunsby C; Neil MA; Lever MJ; Stamp GW; French PM
    J Biomed Opt; 2005; 10(5):051403. PubMed ID: 16292940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study.
    Huh WK; Cestero RM; Garcia FA; Gold MA; Guido RS; McIntyre-Seltman K; Harper DM; Burke L; Sum ST; Flewelling RF; Alvarez RD
    Am J Obstet Gynecol; 2004 May; 190(5):1249-57. PubMed ID: 15167826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence.
    Castellanos MR; Szerszen A; Gundry S; Pirog EC; Maiman M; Rajupet S; Gomez JP; Davidov A; Debata PR; Banerjee P; Fata JE
    Diagn Pathol; 2015 Jul; 10():119. PubMed ID: 26204927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guiding a confocal microscope by single fluorescent nanoparticles.
    Cang H; Xu CS; Montiel D; Yang H
    Opt Lett; 2007 Sep; 32(18):2729-31. PubMed ID: 17873950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective cervical neoplasia detection with a novel optical detection system: a randomized trial.
    Alvarez RD; Wright TC;
    Gynecol Oncol; 2007 Feb; 104(2):281-9. PubMed ID: 17173959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
    Hwang SM; Choi BR; Salama G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1093-7. PubMed ID: 17946022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches.
    Freeberg JA; Benedet JL; MacAulay C; West LA; Follen M
    Gynecol Oncol; 2007 Oct; 107(1 Suppl 1):S248-55. PubMed ID: 17825399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection.
    Fawzy YS; Petek M; Tercelj M; Zeng H
    J Biomed Opt; 2006; 11(4):044003. PubMed ID: 16965160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cervicitis in the Raman-based optical diagnosis of cervical intraepithelial neoplasia.
    Martinho Hda S; Monteiro da Silva CM; Yassoyama MC; Andrade Pde O; Bitar RA; Santo AM; Arisawa EA; Martin AA
    J Biomed Opt; 2008; 13(5):054029. PubMed ID: 19021409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.
    Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y
    J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections.
    Deliolanis N; Lasser T; Hyde D; Soubret A; Ripoll J; Ntziachristos V
    Opt Lett; 2007 Feb; 32(4):382-4. PubMed ID: 17356660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-cost, scalable laser scanning module for real-time reflectance and fluorescence confocal microscopy.
    Chou DR; Bower BA; Wax A
    Appl Opt; 2005 Apr; 44(11):2013-8. PubMed ID: 15835349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths.
    Ramanujam N; Mitchell MF; Mahadevan A; Thomsen S; Malpica A; Wright T; Atkinson N; Richards-Kortum R
    Lasers Surg Med; 1996; 19(1):63-74. PubMed ID: 8836997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.