These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16822074)

  • 1. Birefringence-based eye fixation monitor with no moving parts.
    Gramatikov BI; Zalloum OH; Wu YK; Hunter DG; Guyton DL
    J Biomed Opt; 2006; 11(3):34025. PubMed ID: 16822074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional eye fixation sensor using birefringence-based foveal detection.
    Gramatikov BI; Zalloum OH; Wu YK; Hunter DG; Guyton DL
    Appl Opt; 2007 Apr; 46(10):1809-18. PubMed ID: 17356625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information.
    Gramatikov BI; Guyton DL
    J Med Eng Technol; 2017 May; 41(4):249-256. PubMed ID: 28122478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning.
    Gramatikov BI
    Biomed Eng Online; 2017 Apr; 16(1):52. PubMed ID: 28449714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    J Biomed Opt; 2014 Jun; 19(6):067004. PubMed ID: 24911020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    Opt Express; 2014 Apr; 22(7):7972-88. PubMed ID: 24718173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics.
    Fernández EJ; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1732-8. PubMed ID: 16211799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection of ocular focus.
    Hunter DG; Nusz KJ; Gandhi NK; Quraishi IH; Gramatikov BI; Guyton DL
    J Biomed Opt; 2004; 9(5):1103-9. PubMed ID: 15447031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A device for continuous monitoring of true central fixation based on foveal birefringence.
    Gramatikov B; Irsch K; Müllenbroich M; Frindt N; Qu Y; Gutmark R; Wu YK; Guyton D
    Ann Biomed Eng; 2013 Sep; 41(9):1968-78. PubMed ID: 23645511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TD-PCI system based on an angle modulation for in vivo measurements of the human eye.
    Prinz A; Al-Mohamedi H; Oltrup T; Mieskes G; Bende T
    Biomed Tech (Berl); 2014 Jun; 59(3):251-5. PubMed ID: 24497221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Accuracy of the autorefractor power refractor in clinical work--a comparative study].
    Schittkowski M; Hucks-Sievers S; Krentz H; Guthoff R
    Klin Monbl Augenheilkd; 2005 Dec; 222(12):983-92. PubMed ID: 16380885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz wave polarization analyzer using birefringent materials.
    Zhang L; Zhong H; Deng C; Zhang C; Zhao Y
    Opt Express; 2009 Oct; 17(22):20266-71. PubMed ID: 19997252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New optical scheme for a polarimetric-based glucose sensor.
    Ansari RR; Böckle S; Rovati L
    J Biomed Opt; 2004; 9(1):103-15. PubMed ID: 14715061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of birefringent material using polarization-controlled terahertz spectroscopy.
    Zhang L; Zhong H; Deng C; Zhang C; Zhao Y
    Opt Express; 2010 Sep; 18(19):20491-7. PubMed ID: 20940941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography.
    Cense B; Chen TC; Park BH; Pierce MC; de Boer JF
    J Biomed Opt; 2004; 9(1):121-5. PubMed ID: 14715063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements.
    Colomb T; Dürr F; Cuche E; Marquet P; Limberger HG; Salathé RP; Depeursinge C
    Appl Opt; 2005 Jul; 44(21):4461-9. PubMed ID: 16047894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution.
    Shribak M
    J Opt Soc Am A Opt Image Sci Vis; 2011 Mar; 28(3):410-9. PubMed ID: 21383823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-independent amplification and frequency conversion in strongly-birefringent fibers.
    McKinstrie CJ; Xie C
    Opt Express; 2008 Oct; 16(21):16774-97. PubMed ID: 18852787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms.
    Gramatikov BI
    Comput Biol Med; 2020 Apr; 119():103672. PubMed ID: 32339117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modeling of retinal birefringence scanning.
    Hunter DG; Sandruck JC; Sau S; Patel SN; Guyton DL
    J Opt Soc Am A Opt Image Sci Vis; 1999 Sep; 16(9):2103-11. PubMed ID: 10474891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.