These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16822515)

  • 1. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method.
    de Putter S; Wolters BJ; Rutten MC; Breeuwer M; Gerritsen FA; van de Vosse FN
    J Biomech; 2007; 40(5):1081-90. PubMed ID: 16822515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis.
    Merkx MA; van 't Veer M; Speelman L; Breeuwer M; Buth J; van de Vosse FN
    J Biomech; 2009 Oct; 42(14):2369-73. PubMed ID: 19665127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms.
    Papaharilaou Y; Ekaterinaris JA; Manousaki E; Katsamouris AN
    J Biomech; 2007; 40(2):367-77. PubMed ID: 16500664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application.
    Vande Geest JP; Di Martino ES; Bohra A; Makaroun MS; Vorp DA
    Ann N Y Acad Sci; 2006 Nov; 1085():11-21. PubMed ID: 17182918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.
    Khanafer KM; Bull JL; Upchurch GR; Berguer R
    Ann Vasc Surg; 2007 Jan; 21(1):67-74. PubMed ID: 17349339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of blood flow and vessel geometry on wall stress and rupture risk of abdominal aortic aneurysms.
    Li Z; Kleinstreuer C
    J Med Eng Technol; 2006; 30(5):283-97. PubMed ID: 16980283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy.
    Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA
    J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms.
    Lu J; Zhou X; Raghavan ML
    J Biomech; 2007; 40(3):693-6. PubMed ID: 16542663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Rupture risk of abdominal aortic aneurysms. The role of computational mechanics].
    Giannoglou G; Giannakoulas G; Hatzitolios AI; Rudolf J
    Herz; 2008 Jul; 33(5):354-61. PubMed ID: 18773155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors promoting rupture of abdominal aortic aneurysms.
    Van Damme H; Sakalihasan N; Limet R
    Acta Chir Belg; 2005 Feb; 105(1):1-11. PubMed ID: 15790196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical determinants of abdominal aortic aneurysm rupture.
    Vorp DA; Vande Geest JP
    Arterioscler Thromb Vasc Biol; 2005 Aug; 25(8):1558-66. PubMed ID: 16055757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics.
    Riveros F; Chandra S; Finol EA; Gasser TC; Rodriguez JF
    Ann Biomed Eng; 2013 Apr; 41(4):694-708. PubMed ID: 23192266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic modelling of wall stresses in abdominal aortic aneurysms treated by a gene therapy.
    Mohand-Kaci F; Ouni AE; Dai J; Allaire E; Zidi M
    Comput Methods Biomech Biomed Engin; 2012; 15(4):435-43. PubMed ID: 21264784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.
    Kelly S; O'Rourke M
    Proc Inst Mech Eng H; 2012 Apr; 226(4):288-304. PubMed ID: 22611869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolving mechanical properties of a model of abdominal aortic aneurysm.
    Watton PN; Hill NA
    Biomech Model Mechanobiol; 2009 Feb; 8(1):25-42. PubMed ID: 18058143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive determination of zero-pressure geometry of arterial aneurysms.
    Raghavan ML; Ma B; Fillinger MF
    Ann Biomed Eng; 2006 Sep; 34(9):1414-9. PubMed ID: 16838128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.