These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 16822522)
1. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea. Gruic-Sovulj I; Jaric J; Dulic M; Cindric M; Weygand-Durasevic I J Mol Biol; 2006 Aug; 361(1):128-39. PubMed ID: 16822522 [TBL] [Abstract][Full Text] [Related]
2. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations. Lesjak S; Weygand-Durasevic I FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487 [TBL] [Abstract][Full Text] [Related]
3. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro. Himeno H; Yoshida S; Soma A; Nishikawa K J Mol Biol; 1997 May; 268(4):704-11. PubMed ID: 9175855 [TBL] [Abstract][Full Text] [Related]
4. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Bilokapic S; Korencic D; Söll D; Weygand-Durasevic I Eur J Biochem; 2004 Feb; 271(4):694-702. PubMed ID: 14764085 [TBL] [Abstract][Full Text] [Related]
6. Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase. Soma A; Uchiyama K; Sakamoto T; Maeda M; Himeno H J Mol Biol; 1999 Nov; 293(5):1029-38. PubMed ID: 10547283 [TBL] [Abstract][Full Text] [Related]
7. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase. Sherrer RL; Ho JM; Söll D Nucleic Acids Res; 2008 Apr; 36(6):1871-80. PubMed ID: 18267971 [TBL] [Abstract][Full Text] [Related]
8. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. Fender A; Sissler M; Florentz C; Giegé R Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797 [TBL] [Abstract][Full Text] [Related]
9. Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition. Bilokapic S; Rokov Plavec J; Ban N; Weygand-Durasevic I FEBS J; 2008 Jun; 275(11):2831-44. PubMed ID: 18422966 [TBL] [Abstract][Full Text] [Related]
10. Insights into substrate promiscuity of human seryl-tRNA synthetase. Holman KM; Puppala AK; Lee JW; Lee H; Simonović M RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125 [TBL] [Abstract][Full Text] [Related]
11. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. Korencic D; Polycarpo C; Weygand-Durasevic I; Söll D J Biol Chem; 2004 Nov; 279(47):48780-6. PubMed ID: 15364939 [TBL] [Abstract][Full Text] [Related]
12. The 1.2A crystal structure of an E. coli tRNASer)acceptor stem microhelix reveals two magnesium binding sites. Eichert A; Fürste JP; Schreiber A; Perbandt M; Betzel C; Erdmann VA; Förster C Biochem Biophys Res Commun; 2009 Aug; 386(2):368-73. PubMed ID: 19527687 [TBL] [Abstract][Full Text] [Related]
13. Recognition system of class II tRNA in Escherichia coli and yeast. Soma A; Himeno H Nucleic Acids Symp Ser; 1997; (37):295-6. PubMed ID: 9586116 [TBL] [Abstract][Full Text] [Related]
14. An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation. Dulic M; Pozar J; Bilokapic S; Weygand-Durasevic I; Gruic-Sovulj I Biochimie; 2011 Oct; 93(10):1761-9. PubMed ID: 21704670 [TBL] [Abstract][Full Text] [Related]
15. Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser). Godinic V; Mocibob M; Rocak S; Ibba M; Weygand-Durasevic I FEBS J; 2007 Jun; 274(11):2788-99. PubMed ID: 17451428 [TBL] [Abstract][Full Text] [Related]
16. Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii. Itoh Y; Sekine S; Kuroishi C; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S RNA Biol; 2008; 5(3):169-77. PubMed ID: 18818520 [TBL] [Abstract][Full Text] [Related]
17. Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates. Sampson JR; Saks ME Nucleic Acids Res; 1993 Sep; 21(19):4467-75. PubMed ID: 8233780 [TBL] [Abstract][Full Text] [Related]
18. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme. Rokov-Plavec J; Lesjak S; Landeka I; Mijakovic I; Weygand-Durasevic I Arch Biochem Biophys; 2002 Jan; 397(1):40-50. PubMed ID: 11747308 [TBL] [Abstract][Full Text] [Related]
19. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA. Ryckelynck M; Masquida B; Giegé R; Frugier M J Mol Biol; 2005 Dec; 354(3):614-29. PubMed ID: 16257416 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine. Chiba S; Itoh Y; Sekine S; Yokoyama S Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]