BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16822574)

  • 1. Mutation-induced metabolite pool alterations in Corynebacterium glutamicum: towards the identification of nitrogen control signals.
    Müller T; Strösser J; Buchinger S; Nolden L; Wirtz A; Krämer R; Burkovski A
    J Biotechnol; 2006 Dec; 126(4):440-53. PubMed ID: 16822574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A game with many players: control of gdh transcription in Corynebacterium glutamicum.
    Hänssler E; Müller T; Palumbo K; Patek M; Brocker M; Krämer R; Burkovski A
    J Biotechnol; 2009 Jun; 142(2):114-22. PubMed ID: 19394370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of adenylyltransferase GlnE on nitrogen starvation response in Corynebacterium glutamicum.
    Rehm N; Buchinger S; Strösser J; Dotzauer A; Walter B; Hans S; Bathe B; Schomburg D; Krämer R; Burkovski A
    J Biotechnol; 2010 Feb; 145(3):244-52. PubMed ID: 19963018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combination of metabolome and transcriptome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR.
    Buchinger S; Strösser J; Rehm N; Hänssler E; Hans S; Bathe B; Schomburg D; Krämer R; Burkovski A
    J Biotechnol; 2009 Mar; 140(1-2):68-74. PubMed ID: 19041910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of global analysis techniques to Corynebacterium glutamicum: new insights into nitrogen regulation.
    Silberbach M; Burkovski A
    J Biotechnol; 2006 Oct; 126(1):101-10. PubMed ID: 16698104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen control in Corynebacterium glutamicum: proteins, mechanisms, signals.
    Burkovski A
    J Microbiol Biotechnol; 2007 Feb; 17(2):187-94. PubMed ID: 18051748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production.
    Rehm N; Burkovski A
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):239-48. PubMed ID: 20922371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum.
    Silberbach M; Hüser A; Kalinowski J; Pühler A; Walter B; Krämer R; Burkovski A
    J Biotechnol; 2005 Oct; 119(4):357-67. PubMed ID: 15935503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
    Kocan M; Schaffer S; Ishige T; Sorger-Herrmann U; Wendisch VF; Bott M
    J Bacteriol; 2006 Jan; 188(2):724-32. PubMed ID: 16385062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum.
    Strösser J; Lüdke A; Schaffer S; Krämer R; Burkovski A
    Mol Microbiol; 2004 Oct; 54(1):132-47. PubMed ID: 15458411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of nitrogen metabolism in Mycobacterium tuberculosis: a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor.
    Harper C; Hayward D; Wiid I; van Helden P
    IUBMB Life; 2008 Oct; 60(10):643-50. PubMed ID: 18493948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG.
    Schultz C; Niebisch A; Gebel L; Bott M
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):691-700. PubMed ID: 17437098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
    Lubitz D; Wendisch VF
    BMC Microbiol; 2016 Oct; 16(1):235. PubMed ID: 27717325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R.
    Tsuge Y; Ogino H; Teramoto H; Inui M; Yukawa H
    J Bacteriol; 2008 Dec; 190(24):8204-14. PubMed ID: 18931118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum.
    Hänssler E; Müller T; Jessberger N; Völzke A; Plassmeier J; Kalinowski J; Krämer R; Burkovski A
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):625-32. PubMed ID: 17483938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum.
    Bäumchen C; Bringer-Meyer S
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):545-52. PubMed ID: 17503033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of AmtR-controlled gene expression by modulation of AmtR binding activity in Corynebacterium glutamicum.
    Hasselt K; Rankl S; Worsch S; Burkovski A
    J Biotechnol; 2011 Jul; 154(2-3):156-62. PubMed ID: 20854853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of genes for the enhanced biosynthesis of α-ketoglutarate in Corynebacterium glutamicum.
    Jo JH; Seol HY; Lee YB; Kim MH; Hyun HH; Lee HH
    Can J Microbiol; 2012 Mar; 58(3):278-86. PubMed ID: 22356563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
    Blombach B; Schreiner ME; Moch M; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):615-23. PubMed ID: 17333167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.