BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16822945)

  • 1. Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential.
    Shibata T; Hibino H; Doi K; Suzuki T; Hisa Y; Kurachi Y
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C1038-48. PubMed ID: 16822945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
    Hibino H; Higashi-Shingai K; Fujita A; Iwai K; Ishii M; Kurachi Y
    Eur J Neurosci; 2004 Jan; 19(1):76-84. PubMed ID: 14750965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral wall Na,K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils.
    Schulte BA; Schmiedt RA
    Hear Res; 1992 Aug; 61(1-2):35-46. PubMed ID: 1326507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction in the endocochlear potential caused by Cs(+) in the perilymph can be explained by the five-compartment model of the stria vascularis.
    Kakigi A; Takeuchi S; Ando M; Higashiyama K; Azuma H; Sato T; Takeda T
    Hear Res; 2002 Apr; 166(1-2):54-61. PubMed ID: 12062758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion.
    Miyazaki H; Wangemann P; Marcus DC
    BMC Physiol; 2016 Aug; 17(1):1. PubMed ID: 27515813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis.
    Offner FF; Dallos P; Cheatham MA
    Hear Res; 1987; 29(2-3):117-24. PubMed ID: 3040655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus.
    Hibino H; Nin F; Tsuzuki C; Kurachi Y
    Pflugers Arch; 2010 Mar; 459(4):521-33. PubMed ID: 20012478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in Na, K-ATPase expression, subunit isoform selection and assembly in the stria vascularis lateral wall of mouse cochlea.
    Ding B; Walton JP; Zhu X; Frisina RD
    Hear Res; 2018 Sep; 367():59-73. PubMed ID: 30029086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of alpha and beta subunit isoforms of Na,K-ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci.
    Schulte BA; Steel KP
    Hear Res; 1994 Jul; 78(1):65-76. PubMed ID: 7961179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications.
    Xia A; Kikuchi T; Hozawa K; Katori Y; Takasaka T
    Brain Res; 1999 Oct; 846(1):106-11. PubMed ID: 10536217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency.
    Spicer SS; Schulte BA
    Hear Res; 1996 Oct; 100(1-2):80-100. PubMed ID: 8922982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneously reduced NKCC1 and Na,K-ATPase expression in murine cochlear lateral wall contribute to conservation of endocochlear potential following a sensorineural hearing loss.
    Xiong H; Chu H; Zhou X; Huang X; Cui Y; Zhou L; Chen J; Li J; Wang Y; Chen Q; Li Z
    Neurosci Lett; 2011 Jan; 488(2):204-9. PubMed ID: 21094218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential.
    Hibino H; Horio Y; Inanobe A; Doi K; Ito M; Yamada M; Gotow T; Uchiyama Y; Kawamura M; Kubo T; Kurachi Y
    J Neurosci; 1997 Jun; 17(12):4711-21. PubMed ID: 9169531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Na,K-ATPase sites in lateral cochlear wall tissues of the rat.
    Curtis LM; ten Cate WJ; Rarey KE
    Eur Arch Otorhinolaryngol; 1993; 250(5):265-70. PubMed ID: 8217127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro.
    Wangemann P; Liu J; Marcus DC
    Hear Res; 1995 Apr; 84(1-2):19-29. PubMed ID: 7642451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of endocochlear potential on basolateral Na+ and Cl- concentration: a study using vascular and perilymph perfusion.
    Shindo M; Miyamoto M; Abe N; Shida S; Murakami Y; Imai Y
    Jpn J Physiol; 1992; 42(4):617-30. PubMed ID: 1474679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural localization of the Na-K-Cl cotransporter in the lateral wall of the rabbit cochlear duct.
    Mizuta K; Adachi M; Iwasa KH
    Hear Res; 1997 Apr; 106(1-2):154-62. PubMed ID: 9112115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
    Marcus DC; Wu T; Wangemann P; Kofuji P
    Am J Physiol Cell Physiol; 2002 Feb; 282(2):C403-7. PubMed ID: 11788352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The significance of endothelin for generation of endocochlear potential.
    Fujimura T; Furukawa H; Doi Y; Fujimoto S
    J Cardiovasc Pharmacol; 1998; 31 Suppl 1():S376-7. PubMed ID: 9595487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+,K(+)-ATPase activity in the cochlear lateral wall of the gerbil.
    Furukawa M; Ikeda K; Takeuchi S; Oshima T; Kikuchi T; Takasaka T
    Neurosci Lett; 1996 Aug; 213(3):165-8. PubMed ID: 8873140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.