These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 16822958)
1. AMP-activated protein kinase and the regulation of glucose transport. Fujii N; Jessen N; Goodyear LJ Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E867-77. PubMed ID: 16822958 [TBL] [Abstract][Full Text] [Related]
2. Targeting the AMP-activated protein kinase for the treatment of type 2 diabetes. Musi N; Goodyear LJ Curr Drug Targets Immune Endocr Metabol Disord; 2002 Jul; 2(2):119-27. PubMed ID: 12476786 [TBL] [Abstract][Full Text] [Related]
3. Dissociation of 5' AMP-activated protein kinase activation and glucose uptake stimulation by mitochondrial uncoupling and hyperosmolar stress: differential sensitivities to intracellular Ca2+ and protein kinase C inhibition. Patel N; Khayat ZA; Ruderman NB; Klip A Biochem Biophys Res Commun; 2001 Jul; 285(4):1066-70. PubMed ID: 11467861 [TBL] [Abstract][Full Text] [Related]
4. Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase. Hutchinson DS; Csikasz RI; Yamamoto DL; Shabalina IG; Wikström P; Wilcke M; Bengtsson T Cell Signal; 2007 Jul; 19(7):1610-20. PubMed ID: 17391917 [TBL] [Abstract][Full Text] [Related]
5. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Lee WJ; Song KH; Koh EH; Won JC; Kim HS; Park HS; Kim MS; Kim SW; Lee KU; Park JY Biochem Biophys Res Commun; 2005 Jul; 332(3):885-91. PubMed ID: 15913551 [TBL] [Abstract][Full Text] [Related]
6. Role of the AMPKgamma3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle. Deshmukh AS; Glund S; Tom RZ; Zierath JR Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1388-94. PubMed ID: 19826102 [TBL] [Abstract][Full Text] [Related]
7. AMP-activated protein kinase in the heart: role during health and disease. Arad M; Seidman CE; Seidman JG Circ Res; 2007 Mar; 100(4):474-88. PubMed ID: 17332438 [TBL] [Abstract][Full Text] [Related]
8. The AMP-activated protein kinase: more than an energy sensor. Hue L; Rider MH Essays Biochem; 2007; 43():121-37. PubMed ID: 17705797 [TBL] [Abstract][Full Text] [Related]
9. Rosiglitazone treatment enhances acute AMP-activated protein kinase-mediated muscle and adipose tissue glucose uptake in high-fat-fed rats. Ye JM; Dzamko N; Hoy AJ; Iglesias MA; Kemp B; Kraegen E Diabetes; 2006 Oct; 55(10):2797-804. PubMed ID: 17003345 [TBL] [Abstract][Full Text] [Related]
10. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Lee ES; Uhm KO; Lee YM; Han M; Lee M; Park JM; Suh PG; Park SH; Kim HS Biochem Biophys Res Commun; 2007 Oct; 361(4):854-8. PubMed ID: 17689496 [TBL] [Abstract][Full Text] [Related]
11. AMP-activated protein kinase: Role in metabolism and therapeutic implications. Schimmack G; Defronzo RA; Musi N Diabetes Obes Metab; 2006 Nov; 8(6):591-602. PubMed ID: 17026483 [TBL] [Abstract][Full Text] [Related]
13. AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport? Goodyear LJ Exerc Sport Sci Rev; 2000 Jul; 28(3):113-6. PubMed ID: 10916702 [TBL] [Abstract][Full Text] [Related]
14. Caffeine-induced Ca(2+) release increases AMPK-dependent glucose uptake in rodent soleus muscle. Jensen TE; Rose AJ; Hellsten Y; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E286-92. PubMed ID: 17405829 [TBL] [Abstract][Full Text] [Related]
15. Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats. Mullen KL; Smith AC; Junkin KA; Dyck DJ Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E83-90. PubMed ID: 17356008 [TBL] [Abstract][Full Text] [Related]
16. Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. Kraegen EW; Saha AK; Preston E; Wilks D; Hoy AJ; Cooney GJ; Ruderman NB Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E471-9. PubMed ID: 16234268 [TBL] [Abstract][Full Text] [Related]
17. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Clark SA; Chen ZP; Murphy KT; Aughey RJ; McKenna MJ; Kemp BE; Hawley JA Am J Physiol Endocrinol Metab; 2004 May; 286(5):E737-43. PubMed ID: 14693511 [TBL] [Abstract][Full Text] [Related]
18. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. McConell GK; Lee-Young RS; Chen ZP; Stepto NK; Huynh NN; Stephens TJ; Canny BJ; Kemp BE J Physiol; 2005 Oct; 568(Pt 2):665-76. PubMed ID: 16051629 [TBL] [Abstract][Full Text] [Related]
19. Possible involvement of the alpha1 isoform of 5'AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle. Toyoda T; Hayashi T; Miyamoto L; Yonemitsu S; Nakano M; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Inoue G; Otaka A; Sato K; Fushiki T; Nakao K Am J Physiol Endocrinol Metab; 2004 Jul; 287(1):E166-73. PubMed ID: 15026306 [TBL] [Abstract][Full Text] [Related]
20. AMP-activated protein kinase and the metabolic syndrome. Fryer LG; Carling D Biochem Soc Trans; 2005 Apr; 33(Pt 2):362-6. PubMed ID: 15787607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]