BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

853 related articles for article (PubMed ID: 16822996)

  • 1. Melanoma.
    Miller AJ; Mihm MC
    N Engl J Med; 2006 Jul; 355(1):51-65. PubMed ID: 16822996
    [No Abstract]   [Full Text] [Related]  

  • 2. MITF pathway mutations in melanoma.
    Yokoyama S; Salma N; Fisher DE
    Pigment Cell Melanoma Res; 2009 Aug; 22(4):376-7. PubMed ID: 19558635
    [No Abstract]   [Full Text] [Related]  

  • 3. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation.
    Maurus K; Hufnagel A; Geiger F; Graf S; Berking C; Heinemann A; Paschen A; Kneitz S; Stigloher C; Geissinger E; Otto C; Bosserhoff A; Schartl M; Meierjohann S
    Oncogene; 2017 Sep; 36(36):5110-5121. PubMed ID: 28481878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms in melanoma.
    Diaz-Cano SJ
    N Engl J Med; 2006 Sep; 355(13):1395; author reply 1396. PubMed ID: 17005965
    [No Abstract]   [Full Text] [Related]  

  • 5. Adhesion, migration and communication in melanocytes and melanoma.
    Haass NK; Smalley KS; Li L; Herlyn M
    Pigment Cell Res; 2005 Jun; 18(3):150-9. PubMed ID: 15892711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma.
    Hsiao JJ; Fisher DE
    Arch Biochem Biophys; 2014 Dec; 563():28-34. PubMed ID: 25111671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SOX2 modulates levels of MITF in normal human melanocytes, and melanoma lines in vitro.
    Cimadamore F; Shah M; Amador-Arjona A; Navarro-Peran E; Chen C; Huang CT; Terskikh AV
    Pigment Cell Melanoma Res; 2012 Jul; 25(4):533-6. PubMed ID: 22571403
    [No Abstract]   [Full Text] [Related]  

  • 8. Microphthalmia-associated transcription factor expression levels in melanoma cells contribute to cell invasion and proliferation.
    Vachtenheim J; Ondrušová L
    Exp Dermatol; 2015 Jul; 24(7):481-4. PubMed ID: 25866058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Malignant melanoma and the role of the paradoxal protein Microphthalmia transcription factor].
    Denat L; Larue L
    Bull Cancer; 2007 Jan; 94(1):81-92. PubMed ID: 17237008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microphthalmia-associated transcription factor regulates skin melanoblast migration by repressing the melanoma cell adhesion molecule.
    Rao C; Su Z; Li H; Ma X; Zheng X; Liu Y; Lu F; Qu J; Hou L
    Exp Dermatol; 2016 Jan; 25(1):74-6. PubMed ID: 26284703
    [No Abstract]   [Full Text] [Related]  

  • 11. The three M's: melanoma, microphthalmia-associated transcription factor and microRNA.
    Bell RE; Levy C
    Pigment Cell Melanoma Res; 2011 Dec; 24(6):1088-106. PubMed ID: 22004179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How, and from which cell sources, do nevi really develop?
    Grichnik JM; Ross AL; Schneider SL; Sanchez MI; Eller MS; Hatzistergos KE
    Exp Dermatol; 2014 May; 23(5):310-3. PubMed ID: 24588745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1.
    Bagati A; Bianchi-Smiraglia A; Moparthy S; Kolesnikova K; Fink EE; Lipchick BC; Kolesnikova M; Jowdy P; Polechetti A; Mahpour A; Ross J; Wawrzyniak JA; Yun DH; Paragh G; Kozlova NI; Berman AE; Wang J; Liu S; Nemeth MJ; Nikiforov MA
    Cell Rep; 2017 Sep; 20(12):2820-2832. PubMed ID: 28930679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential roles of the pRb and Arf/p53 pathways in murine naevus and melanoma genesis.
    Ferguson B; Konrad Muller H; Handoko HY; Khosrotehrani K; Beermann F; Hacker E; Soyer HP; Bosenberg M; Walker GJ
    Pigment Cell Melanoma Res; 2010 Dec; 23(6):771-80. PubMed ID: 20718941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of microtubule-associated protein 2 in benign and malignant melanocytes: implications for differentiation and progression of cutaneous melanoma.
    Fang D; Hallman J; Sangha N; Kute TE; Hammarback JA; White WL; Setaluri V
    Am J Pathol; 2001 Jun; 158(6):2107-15. PubMed ID: 11395388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment.
    Seftor EA; Brown KM; Chin L; Kirschmann DA; Wheaton WW; Protopopov A; Feng B; Balagurunathan Y; Trent JM; Nickoloff BJ; Seftor RE; Hendrix MJ
    Cancer Res; 2005 Nov; 65(22):10164-9. PubMed ID: 16288000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinicopathological characterization of mouse models of melanoma.
    Ferguson B; Soyer HP; Walker GJ
    Methods Mol Biol; 2015; 1267():251-61. PubMed ID: 25636472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental pathways activated in melanocytes and melanoma.
    Liu J; Fukunaga-Kalabis M; Li L; Herlyn M
    Arch Biochem Biophys; 2014 Dec; 563():13-21. PubMed ID: 25109840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular pathogenesis of cutaneous melanocytic neoplasms.
    Ibrahim N; Haluska FG
    Annu Rev Pathol; 2009; 4():551-79. PubMed ID: 19400696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [MITF: a genetic key to melanoma and renal cell carcinoma?].
    Bertolotto C; Lesueur F; Bressac de Paillerets B
    Med Sci (Paris); 2012 Mar; 28(3):258-61. PubMed ID: 22480646
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 43.