BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16823036)

  • 1. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions.
    Manikandan K; Bhardwaj A; Gupta N; Lokanath NK; Ghosh A; Reddy VS; Ramakumar S
    Protein Sci; 2006 Aug; 15(8):1951-60. PubMed ID: 16823036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27.
    Manikandan K; Bhardwaj A; Ghosh A; Reddy VS; Ramakumar S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Aug; 61(Pt 8):747-9. PubMed ID: 16511146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.
    Mamo G; Thunnissen M; Hatti-Kaul R; Mattiasson B
    Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation.
    Bai W; Zhou C; Zhao Y; Wang Q; Ma Y
    PLoS One; 2015; 10(7):e0132834. PubMed ID: 26161643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis.
    Bai W; Cao Y; Liu J; Wang Q; Jia Z
    BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The critical role of partially exposed N-terminal valine residue in stabilizing GH10 xylanase from Bacillus sp.NG-27 under poly-extreme conditions.
    Bhardwaj A; Leelavathi S; Mazumdar-Leighton S; Ghosh A; Ramakumar S; Reddy VS
    PLoS One; 2008 Aug; 3(8):e3063. PubMed ID: 18725971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression, and sequence analysis of the gene encoding the alkali-stable, thermostable endoxylanase from alkalophilic, mesophilic Bacillus sp. Strain NG-27.
    Gupta N; Reddy VS; Maiti S; Ghosh A
    Appl Environ Microbiol; 2000 Jun; 66(6):2631-5. PubMed ID: 10831448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the alkalophilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis.
    De Lemos Esteves F; Gouders T; Lamotte-Brasseur J; Rigali S; Frère JM
    Protein Sci; 2005 Feb; 14(2):292-302. PubMed ID: 15659364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure and fluorescence analysis of alkaline thermostable xylanase from Bacillus sp. (NCL 87-6-10).
    Satyanarayana L; Gaikwad SM; Balkrishnan H; Suresh CG
    Protein Pept Lett; 2013 Feb; 20(2):125-32. PubMed ID: 22894149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus.
    Dodda SR; Hossain M; Kapoor BS; Dasgupta S; B VPR; Aikat K; Mukhopadhyay SS
    Comput Biol Chem; 2021 Apr; 91():107451. PubMed ID: 33601238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the acidophilic pH adaptation of a novel endo-1,4-β-xylanase from Scytalidium acidophilum.
    Michaux C; Pouyez J; Mayard A; Vandurm P; Housen I; Wouters J
    Biochimie; 2010 Oct; 92(10):1407-15. PubMed ID: 20621155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Progress in the thermophilic and alkalophilic xylanases].
    Bai W; Wang Q; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Jun; 30(6):828-37. PubMed ID: 25212001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization.
    Shrinivas D; Savitha G; Raviranjan K; Naik GR
    Appl Biochem Biotechnol; 2010 Nov; 162(7):2049-57. PubMed ID: 20467831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction and rationalization of the pH dependence of the activity and stability of family 11 xylanases.
    Kongsted J; Ryde U; Wydra J; Jensen JH
    Biochemistry; 2007 Nov; 46(47):13581-92. PubMed ID: 17960918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions.
    Zhao Y; Zhang Y; Cao Y; Qi J; Mao L; Xue Y; Gao F; Peng H; Wang X; Gao GF; Ma Y
    PLoS One; 2011 Jan; 6(1):e14608. PubMed ID: 21436878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference.
    Zhang Y; An J; Yang G; Zhang X; Xie Y; Chen L; Feng Y
    Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):948-957. PubMed ID: 27563004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of two thermostable xylanases from Malbranchea flava active under alkaline conditions.
    Sharma M; Chadha BS; Saini HS
    Bioresour Technol; 2010 Nov; 101(22):8834-42. PubMed ID: 20630749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of the properties of an industrially relevant thermophilic xylanase.
    Harris GW; Pickersgill RW; Connerton I; Debeire P; Touzel JP; Breton C; Pérez S
    Proteins; 1997 Sep; 29(1):77-86. PubMed ID: 9294868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into N-terminal to C-terminal interactions and implications for thermostability of a (β/α)8-triosephosphate isomerase barrel enzyme.
    Mahanta P; Bhardwaj A; Kumar K; Reddy VS; Ramakumar S
    FEBS J; 2015 Sep; 282(18):3543-55. PubMed ID: 26102498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of a GH10 xylanase from Fusarium oxysporum reveals the presence of an extended loop on top of the catalytic cleft.
    Dimarogona M; Topakas E; Christakopoulos P; Chrysina ED
    Acta Crystallogr D Biol Crystallogr; 2012 Jul; 68(Pt 7):735-42. PubMed ID: 22751658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.