These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16823113)

  • 1. Functionalization of biomaterials and cell to cell communication.
    Amédée J; Guillotin B; Pallu S; Bareille R; Guignandon A; Bourget Ch; Durrieu MC; Bordenave L
    Biomed Mater Eng; 2006; 16(4 Suppl):S53-60. PubMed ID: 16823113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials.
    Unger RE; Sartoris A; Peters K; Motta A; Migliaresi C; Kunkel M; Bulnheim U; Rychly J; Kirkpatrick CJ
    Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bioactive titanium foam scaffold for bone repair.
    Spoerke ED; Murray NG; Li H; Brinson LC; Dunand DC; Stupp SI
    Acta Biomater; 2005 Sep; 1(5):523-33. PubMed ID: 16701832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthopaedic tissue engineering and bone regeneration.
    Dickson G; Buchanan F; Marsh D; Harkin-Jones E; Little U; McCaigue M
    Technol Health Care; 2007; 15(1):57-67. PubMed ID: 17264413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resorbability of bone substitute biomaterials by human osteoclasts.
    Schilling AF; Linhart W; Filke S; Gebauer M; Schinke T; Rueger JM; Amling M
    Biomaterials; 2004 Aug; 25(18):3963-72. PubMed ID: 15046886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.
    Lutolf MP; Hubbell JA
    Nat Biotechnol; 2005 Jan; 23(1):47-55. PubMed ID: 15637621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell culture models of higher complexity in tissue engineering and regenerative medicine.
    James Kirkpatrick C; Fuchs S; Iris Hermanns M; Peters K; Unger RE
    Biomaterials; 2007 Dec; 28(34):5193-8. PubMed ID: 17761278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques.
    Schumann D; Ekaputra AK; Lam CX; Hutmacher DW
    Methods Mol Med; 2007; 140():101-24. PubMed ID: 18085205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologic augmentation of polymer scaffolds for bone repair.
    Guldberg RE; Oest ME; Dupont K; Peister A; Deutsch E; Kolambkar Y; Mooney D
    J Musculoskelet Neuronal Interact; 2007; 7(4):333-4. PubMed ID: 18094499
    [No Abstract]   [Full Text] [Related]  

  • 12. Novel approach by nanobiomaterials in vascular tissue engineering.
    Hung HS; Chen HC; Tsai CH; Lin SZ
    Cell Transplant; 2011; 20(1):63-70. PubMed ID: 20887685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization.
    Yu H; VandeVord PJ; Mao L; Matthew HW; Wooley PH; Yang SY
    Biomaterials; 2009 Feb; 30(4):508-17. PubMed ID: 18973938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Tissue engineering].
    Jansen JA
    Ned Tijdschr Tandheelkd; 2002 May; 109(5):178-81. PubMed ID: 12051074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On scaffold designing for bone regeneration: A computational multiscale approach.
    Sanz-Herrera JA; García-Aznar JM; Doblaré M
    Acta Biomater; 2009 Jan; 5(1):219-29. PubMed ID: 18725187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold's surface geometry significantly affects human stem cell bone tissue engineering.
    Graziano A; d'Aquino R; Cusella-De Angelis MG; De Francesco F; Giordano A; Laino G; Piattelli A; Traini T; De Rosa A; Papaccio G
    J Cell Physiol; 2008 Jan; 214(1):166-72. PubMed ID: 17565721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-mimetic composite matrix that promotes endothelial cell growth for modification of biomaterial surface.
    Prasad CK; Muraleedharan CV; Krishnan LK
    J Biomed Mater Res A; 2007 Mar; 80(3):644-54. PubMed ID: 17051537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials.
    Itthichaisri C; Wiedmann-Al-Ahmad M; Huebner U; Al-Ahmad A; Schoen R; Schmelzeisen R; Gellrich NC
    J Biomed Mater Res A; 2007 Sep; 82(4):777-87. PubMed ID: 17326141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone.
    Garreta E; Gasset D; Semino C; Borrós S
    Biomol Eng; 2007 Feb; 24(1):75-80. PubMed ID: 16846750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.