These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 16823371)

  • 41. Targeted gene silencing by small interfering RNA-based knock-down technology.
    Zhang J; Hua ZC
    Curr Pharm Biotechnol; 2004 Feb; 5(1):1-7. PubMed ID: 14965205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioconjugated Gold Nanoparticles Enhance siRNA Delivery in Prostate Cancer Cells.
    Rahme K; Guo J; Holmes JD
    Methods Mol Biol; 2019; 1974():291-301. PubMed ID: 31099011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic Targeting HER2 and EGFR with Bivalent Aptamer-siRNA Chimera Efficiently Inhibits HER2-Positive Tumor Growth.
    Xue L; Maihle NJ; Yu X; Tang SC; Liu HY
    Mol Pharm; 2018 Nov; 15(11):4801-4813. PubMed ID: 30222359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections.
    Bolhassani A; Milani A
    Curr Mol Pharmacol; 2020; 13(3):173-181. PubMed ID: 31760929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aptamer-Mediated Delivery and Cell-Targeting Aptamers: Room for Improvement.
    Yan AC; Levy M
    Nucleic Acid Ther; 2018 Jun; 28(3):194-199. PubMed ID: 29883295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Co-targeting EGFR and survivin with a bivalent aptamer-dual siRNA chimera effectively suppresses prostate cancer.
    Liu HY; Yu X; Liu H; Wu D; She JX
    Sci Rep; 2016 Jul; 6():30346. PubMed ID: 27456457
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic inhibition of lung cancer cell invasion, tumor growth and angiogenesis using aptamer-siRNA chimeras.
    Lai WY; Wang WY; Chang YC; Chang CJ; Yang PC; Peck K
    Biomaterials; 2014 Mar; 35(9):2905-14. PubMed ID: 24397988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Advance in the study of targeting delivery system for siRNA mediated by aptamers].
    Wang XL; Wang QQ; Song HF
    Yao Xue Xue Bao; 2012 Jul; 47(7):850-5. PubMed ID: 22993847
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer.
    Powell D; Chandra S; Dodson K; Shaheen F; Wiltz K; Ireland S; Syed M; Dash S; Wiese T; Mandal T; Kundu A
    Eur J Pharm Biopharm; 2017 May; 114():108-118. PubMed ID: 28131717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs.
    Dykxhoorn DM; Lieberman J
    Annu Rev Biomed Eng; 2006; 8():377-402. PubMed ID: 16834561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Utilizing RNA nanotechnology to construct negatively charged and ultrasound-responsive nanodroplets for targeted delivery of siRNA.
    Guo L; Shi D; Shang M; Sun X; Meng D; Liu X; Zhou X; Li J
    Drug Deliv; 2022 Dec; 29(1):316-327. PubMed ID: 35037525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Therapeutic potential of aptamer-siRNA conjugates for treatment of HIV-1.
    Zhou J; Rossi JJ
    BioDrugs; 2012 Dec; 26(6):393-400. PubMed ID: 23046156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer.
    Dhanya CR; Mary AS; Madhavan M
    Chem Biol Drug Des; 2023 May; 101(5):1162-1180. PubMed ID: 36099164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification.
    Zhang L; Chen C; Fan X; Tang X
    Chembiochem; 2018 Jun; 19(12):1259-1263. PubMed ID: 29488297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo.
    Alexander-Bryant AA; Zhang H; Attaway CC; Pugh W; Eggart L; Sansevere RM; Andino LM; Dinh L; Cantini LP; Jakymiw A
    Oral Oncol; 2017 Sep; 72():123-131. PubMed ID: 28797448
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A bivalent aptamer and terminus-free siRNA junction nanostructure for targeted gene silencing in cancer cells.
    Yang F; Li S; Yuan R; Xiang Y
    J Mater Chem B; 2022 Oct; 10(40):8315-8321. PubMed ID: 36165395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo.
    Mook OR; Baas F; de Wissel MB; Fluiter K
    Mol Cancer Ther; 2007 Mar; 6(3):833-43. PubMed ID: 17363479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2A oncogene into oral cancer cells.
    Cantini L; Attaway CC; Butler B; Andino LM; Sokolosky ML; Jakymiw A
    PLoS One; 2013; 8(9):e73348. PubMed ID: 24019920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model.
    Reich SJ; Fosnot J; Kuroki A; Tang W; Yang X; Maguire AM; Bennett J; Tolentino MJ
    Mol Vis; 2003 May; 9():210-6. PubMed ID: 12789138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNAi-mediated suppression of constitutive pulmonary gene expression by small interfering RNA in mice.
    Gutbier B; Kube SM; Reppe K; Santel A; Lange C; Kaufmann J; Suttorp N; Witzenrath M
    Pulm Pharmacol Ther; 2010 Aug; 23(4):334-44. PubMed ID: 20362688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.