These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
591 related articles for article (PubMed ID: 16823451)
61. Teleseismic search for slow precursors to large earthquakes. Ihmlé PF; Jordan TH Science; 1994 Dec; 266(5190):1547-51. PubMed ID: 17841716 [TBL] [Abstract][Full Text] [Related]
62. Possible control of subduction zone slow-earthquake periodicity by silica enrichment. Audet P; Bürgmann R Nature; 2014 Jun; 510(7505):389-92. PubMed ID: 24943955 [TBL] [Abstract][Full Text] [Related]
63. Variations in strength and slip rate along the san andreas fault system. Jones CH; Wesnousky SG Science; 1992 Apr; 256(5053):83-6. PubMed ID: 17802597 [TBL] [Abstract][Full Text] [Related]
64. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Di Toro G; Goldsby DL; Tullis TE Nature; 2004 Jan; 427(6973):436-9. PubMed ID: 14749829 [TBL] [Abstract][Full Text] [Related]
65. Seismic evidence for active underplating below the megathrust earthquake zone in Japan. Kimura H; Takeda T; Obara K; Kasahara K Science; 2010 Jul; 329(5988):210-2. PubMed ID: 20616277 [TBL] [Abstract][Full Text] [Related]
66. Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip. Kaproth BM; Marone C Science; 2013 Sep; 341(6151):1229-32. PubMed ID: 23950495 [TBL] [Abstract][Full Text] [Related]
67. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes. Johnson PA; Savage H; Knuth M; Gomberg J; Marone C Nature; 2008 Jan; 451(7174):57-60. PubMed ID: 18172496 [TBL] [Abstract][Full Text] [Related]
68. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Fialko Y Nature; 2006 Jun; 441(7096):968-71. PubMed ID: 16791192 [TBL] [Abstract][Full Text] [Related]
69. Slow slip events in the roots of the San Andreas fault. Rousset B; Bürgmann R; Campillo M Sci Adv; 2019 Feb; 5(2):eaav3274. PubMed ID: 30788438 [TBL] [Abstract][Full Text] [Related]
70. Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, earthquakes. Nadeau RM; Guilhem A Science; 2009 Jul; 325(5937):191-3. PubMed ID: 19589999 [TBL] [Abstract][Full Text] [Related]
71. An exponential build-up in seismic energy suggests a months-long nucleation of slow slip in Cascadia. Hulbert C; Rouet-Leduc B; Jolivet R; Johnson PA Nat Commun; 2020 Aug; 11(1):4139. PubMed ID: 32811833 [TBL] [Abstract][Full Text] [Related]
72. Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling. Frank WB; Brodsky EE Sci Adv; 2019 Oct; 5(10):eaaw9386. PubMed ID: 31616786 [TBL] [Abstract][Full Text] [Related]
73. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Leeman JR; Saffer DM; Scuderi MM; Marone C Nat Commun; 2016 Mar; 7():11104. PubMed ID: 27029996 [TBL] [Abstract][Full Text] [Related]
75. Excitation of San Andreas tremors by thermal instabilities below the seismogenic zone. Wang L; Barbot S Sci Adv; 2020 Sep; 6(36):. PubMed ID: 32917611 [TBL] [Abstract][Full Text] [Related]
76. Modelling the seismic potential of the Indo-Burman megathrust. Vorobieva I; Gorshkov A; Mandal P Sci Rep; 2021 Oct; 11(1):21200. PubMed ID: 34707146 [TBL] [Abstract][Full Text] [Related]
77. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Subarya C; Chlieh M; Prawirodirdjo L; Avouac JP; Bock Y; Sieh K; Meltzner AJ; Natawidjaja DH; McCaffrey R Nature; 2006 Mar; 440(7080):46-51. PubMed ID: 16511486 [TBL] [Abstract][Full Text] [Related]
78. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Hilairet N; Reynard B; Wang Y; Daniel I; Merkel S; Nishiyama N; Petitgirard S Science; 2007 Dec; 318(5858):1910-3. PubMed ID: 18096804 [TBL] [Abstract][Full Text] [Related]
79. Coseismic fault-slip distribution of the 2019 Ridgecrest Mw6.4 and Mw7.1 earthquakes. Gao Y; Duan H; Zhang Y; Chen J; Jian H; Wu R; Yin W Sci Rep; 2021 Jul; 11(1):14188. PubMed ID: 34244533 [TBL] [Abstract][Full Text] [Related]
80. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Okazaki K; Hirth G Nature; 2016 Feb; 530(7588):81-4. PubMed ID: 26842057 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]