These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16823623)

  • 21. Chemical defense lowers plant competitiveness.
    Ballhorn DJ; Godschalx AL; Smart SM; Kautz S; Schädler M
    Oecologia; 2014 Nov; 176(3):811-24. PubMed ID: 25173086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of the Prunus spp. Cyanide Seed Defense System onto Wheat: Reduced Insect Feeding and Field Growth Tests.
    Mora CA; Halter JG; Adler C; Hund A; Anders H; Yu K; Stark WJ
    J Agric Food Chem; 2016 May; 64(18):3501-7. PubMed ID: 27119432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Mexican Bean Beetle (Coleoptera: Coccinellidae) Host Selection, Survival, and Feeding Injury Among Snap Bean and Lima Bean Cultivars.
    Nottingham LB; Kuhar TP
    J Econ Entomol; 2019 Mar; 112(2):736-744. PubMed ID: 30605540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyanogenesis, a Plant Defence Strategy against Herbivores.
    Boter M; Diaz I
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequency of cyanogenesis in tropical rainforests of far north Queensland, Australia.
    Miller RE; Jensen R; Woodrow IE
    Ann Bot; 2006 Jun; 97(6):1017-44. PubMed ID: 16520340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reflective Polyethylene Mulch Reduces Mexican Bean Beetle (Coleoptera: Coccinellidae) Densities and Damage in Snap Beans.
    Nottingham LB; Kuhar TP
    J Econ Entomol; 2016 Aug; 109(4):1785-92. PubMed ID: 27341891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induced resistance to Mexican bean beetles in soybean: variation among genotypes and lack of correlation with constitutive resistance.
    Underwood N; Morris W; Gross K; Lockwood Iii JR
    Oecologia; 2000 Jan; 122(1):83-89. PubMed ID: 28307960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of difluron (dimilin) on larvae, imagines and eggs of Epilachna varivestis Muls. through application to the host plant].
    Monteiro Neves A; Beyer R
    Beitr Trop Landwirtsch Veterinarmed; 1982; 20(4):457-65. PubMed ID: 6820635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that ribonuclease activity present in beetle regurgitant is found to stimulate virus resistance in plants.
    Musser RO; Hum-Musser SM; Slaten-Bickford SE; Felton GW; Gergerich RC
    J Chem Ecol; 2002 Aug; 28(8):1691-6. PubMed ID: 12371820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The distribution of eggs per host in a herbivorous insect--intersection of oviposition, dispersal and population dynamics.
    Zu Dohna H
    J Anim Ecol; 2006 Mar; 75(2):387-98. PubMed ID: 16637992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of
    Pentzold S; Jensen MK; Matthes A; Olsen CE; Petersen BL; Clausen H; Møller BL; Bak S; Zagrobelny M
    R Soc Open Sci; 2017 Jun; 4(6):170262. PubMed ID: 28680679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fungal root symbiont modifies plant resistance to an insect herbivore.
    Borowicz VA
    Oecologia; 1997 Nov; 112(4):534-542. PubMed ID: 28307631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant Cyanogenic-Derived Metabolites and Herbivore Counter-Defences.
    Martinez M; Diaz I
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system.
    Zagrobelny M; Møller BL
    Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oviposition in Delia platura (Diptera, Anthomyiidae): the role of volatile and contact cues of bean.
    Gouinguené SP; Städler E
    J Chem Ecol; 2006 Jul; 32(7):1399-413. PubMed ID: 16718565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism, excretion and avoidance of cyanogenic glucosides in insects with different feeding specialisations.
    Pentzold S; Zagrobelny M; Bjarnholt N; Kroymann J; Vogel H; Olsen CE; Møller BL; Bak S
    Insect Biochem Mol Biol; 2015 Nov; 66():119-28. PubMed ID: 26483288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyanogenesis in plants and arthropods.
    Zagrobelny M; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1457-68. PubMed ID: 18353406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variable expression of cyanide detoxification and tolerance genes in cyanogenic and acyanogenic white clover (Trifolium repens).
    Kuo WH; Small LL; Olsen KM
    Am J Bot; 2023 Oct; 110(10):e16233. PubMed ID: 37661820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel aspects of cyanogenesis in Eucalyptus camphora subsp. humeana.
    Neilson EH; Goodger JQD; Woodrow IE
    Funct Plant Biol; 2006 May; 33(5):487-496. PubMed ID: 32689255
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.