These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 16823986)
1. Efficient high-throughput discovery of large peptidic hormones and biomarkers. Taylor SW; Andon NL; Bilakovics JM; Lowe C; Hanley MR; Pittner R; Ghosh SS J Proteome Res; 2006 Jul; 5(7):1776-84. PubMed ID: 16823986 [TBL] [Abstract][Full Text] [Related]
2. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. Sardana G; Jung K; Stephan C; Diamandis EP J Proteome Res; 2008 Aug; 7(8):3329-38. PubMed ID: 18578523 [TBL] [Abstract][Full Text] [Related]
3. Peptidomics. Baggerman G; Verleyen P; Clynen E; Huybrechts J; De Loof A; Schoofs L J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Apr; 803(1):3-16. PubMed ID: 15025994 [TBL] [Abstract][Full Text] [Related]
4. A proteomic analysis of the plasma glycoproteins of a MCF-7 mouse xenograft: a model system for the detection of tumor markers. Orazine CI; Hincapie M; Hancock WS; Hattersley M; Hanke JH J Proteome Res; 2008 Apr; 7(4):1542-54. PubMed ID: 18336003 [TBL] [Abstract][Full Text] [Related]
5. Proteomics in pancreatic cancer research. Cecconi D; Palmieri M; Donadelli M Proteomics; 2011 Feb; 11(4):816-28. PubMed ID: 21229586 [TBL] [Abstract][Full Text] [Related]
6. Analysis of low molecular mass GTP-binding proteins in insulinoma-derived RINm5F cells by two-dimensional gel electrophoresis. Göke R; Göke B Horm Metab Res; 1991 Jun; 23(6):304-5. PubMed ID: 1916647 [No Abstract] [Full Text] [Related]
7. An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptides. Merrell K; Thulin CD; Esplin MS; Graves SW Rapid Commun Mass Spectrom; 2009 Sep; 23(17):2685-96. PubMed ID: 19630037 [TBL] [Abstract][Full Text] [Related]
8. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase. Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946 [TBL] [Abstract][Full Text] [Related]
9. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. Pan S; Rush J; Peskind ER; Galasko D; Chung K; Quinn J; Jankovic J; Leverenz JB; Zabetian C; Pan C; Wang Y; Oh JH; Gao J; Zhang J; Montine T; Zhang J J Proteome Res; 2008 Feb; 7(2):720-30. PubMed ID: 18186601 [TBL] [Abstract][Full Text] [Related]
11. A computational approach toward label-free protein quantification using predicted peptide detectability. Tang H; Arnold RJ; Alves P; Xun Z; Clemmer DE; Novotny MV; Reilly JP; Radivojac P Bioinformatics; 2006 Jul; 22(14):e481-8. PubMed ID: 16873510 [TBL] [Abstract][Full Text] [Related]
12. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry. Ning K; Ng HK; Leong HW Genome Inform; 2007; 19():119-30. PubMed ID: 18546510 [TBL] [Abstract][Full Text] [Related]
13. SELDI-TOF-MS of saliva: methodology and pre-treatment effects. Schipper R; Loof A; de Groot J; Harthoorn L; Dransfield E; van Heerde W J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Feb; 847(1):45-53. PubMed ID: 17070117 [TBL] [Abstract][Full Text] [Related]
14. A spectral clustering approach to MS/MS identification of post-translational modifications. Falkner JA; Falkner JW; Yocum AK; Andrews PC J Proteome Res; 2008 Nov; 7(11):4614-22. PubMed ID: 18800783 [TBL] [Abstract][Full Text] [Related]
15. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline. Dowsey AW; Dunn MJ; Yang GZ Bioinformatics; 2008 Apr; 24(7):950-7. PubMed ID: 18310057 [TBL] [Abstract][Full Text] [Related]
16. High-performance proteomics as a tool in biomarker discovery. Meyer HE; Stühler K Proteomics; 2007 Sep; 7 Suppl 1():18-26. PubMed ID: 17893859 [TBL] [Abstract][Full Text] [Related]
17. Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimen. Lee HJ; Na K; Kwon MS; Kim H; Kim KS; Paik YK Proteomics; 2009 Jun; 9(12):3395-408. PubMed ID: 19562805 [TBL] [Abstract][Full Text] [Related]
18. Biomarker assay translation from discovery to clinical studies in cancer drug development: quantification of emerging protein biomarkers. Lee JW; Figeys D; Vasilescu J Adv Cancer Res; 2007; 96():269-98. PubMed ID: 17161683 [TBL] [Abstract][Full Text] [Related]
19. Oncoproteomics: current trends and future perspectives. Cho WC; Cheng CH Expert Rev Proteomics; 2007 Jun; 4(3):401-10. PubMed ID: 17552924 [TBL] [Abstract][Full Text] [Related]
20. Amphibian skin secretomics: application of parallel quadrupole time-of-flight mass spectrometry and peptide precursor cDNA cloning to rapidly characterize the skin secretory peptidome of Phyllomedusa hypochondrialis azurea: discovery of a novel peptide family, the hyposins. Thompson AH; Bjourson AJ; Orr DF; Shaw C; McClean S J Proteome Res; 2007 Sep; 6(9):3604-13. PubMed ID: 17696382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]