These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16824098)

  • 1. Two different Pseudomonas aeruginosa chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase.
    Güvener ZT; Tifrea DF; Harwood CS
    Mol Microbiol; 2006 Jul; 61(1):106-18. PubMed ID: 16824098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the Che2 chemosensory pathway and the roles of individual Che2 proteins from Pseudomonas aeruginosa.
    Orillard E; Watts KJ
    Mol Microbiol; 2021 Feb; 115(2):222-237. PubMed ID: 32979856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response.
    Ferrández A; Hawkins AC; Summerfield DT; Harwood CS
    J Bacteriol; 2002 Aug; 184(16):4374-83. PubMed ID: 12142407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum.
    Berleman JE; Bauer CE
    Mol Microbiol; 2005 Mar; 55(5):1390-402. PubMed ID: 15720548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant.
    Alvarez-Ortega C; Harwood CS
    Appl Environ Microbiol; 2007 Dec; 73(23):7793-5. PubMed ID: 17933940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum.
    Berleman JE; Bauer CE
    Mol Microbiol; 2005 Jun; 56(6):1457-66. PubMed ID: 15916598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1.
    Lin CT; Huang YJ; Chu PH; Hsu JL; Huang CH; Peng HL
    Res Microbiol; 2006 Mar; 157(2):169-75. PubMed ID: 16182517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Roles for HAMP Domains: the Tri-HAMP Region of Pseudomonas aeruginosa Aer2 Controls Receptor Signaling and Cellular Localization.
    Anaya S; Orillard E; Greer-Phillips SE; Watts KJ
    J Bacteriol; 2022 Sep; 204(9):e0022522. PubMed ID: 35916529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PilJ localizes to cell poles and is required for type IV pilus extension in Pseudomonas aeruginosa.
    DeLange PA; Collins TL; Pierce GE; Robinson JB
    Curr Microbiol; 2007 Nov; 55(5):389-95. PubMed ID: 17713814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The highly conserved domain of the Caulobacter McpA chemoreceptor is required for its polar localization.
    Alley MR
    Mol Microbiol; 2001 Jun; 40(6):1335-43. PubMed ID: 11442832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene.
    Kim HE; Shitashiro M; Kuroda A; Takiguchi N; Ohtake H; Kato J
    J Bacteriol; 2006 Sep; 188(18):6700-2. PubMed ID: 16952963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements for chemotaxis protein localization in Rhodobacter sphaeroides.
    Wadhams GH; Martin AC; Warren AV; Armitage JP
    Mol Microbiol; 2005 Nov; 58(3):895-902. PubMed ID: 16238635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species.
    Choy WK; Zhou L; Syn CK; Zhang LH; Swarup S
    J Bacteriol; 2004 Nov; 186(21):7221-8. PubMed ID: 15489433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of the multiple CheW and CheA homologues in chemotaxis and in chemoreceptor localization in Rhodobacter sphaeroides.
    Martin AC; Wadhams GH; Armitage JP
    Mol Microbiol; 2001 Jun; 40(6):1261-72. PubMed ID: 11442826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response regulator output in bacterial chemotaxis.
    Alon U; Camarena L; Surette MG; Aguera y Arcas B; Liu Y; Leibler S; Stock JB
    EMBO J; 1998 Aug; 17(15):4238-48. PubMed ID: 9687492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa.
    Li Y; Xia H; Bai F; Xu H; Yang L; Yao H; Zhang L; Zhang X; Bai Y; Saris PE; Tolker-Nielsen T; Qiao M
    FEMS Microbiol Lett; 2007 Jul; 272(2):188-95. PubMed ID: 17521365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa.
    Hong CS; Shitashiro M; Kuroda A; Ikeda T; Takiguchi N; Ohtake H; Kato J
    FEMS Microbiol Lett; 2004 Feb; 231(2):247-52. PubMed ID: 14987771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of the CheR2 methyltransferase in Pseudomonas aeruginosa is directed by a C-terminal pentapeptide in the McpB chemoreceptor.
    García-Fontana C; Corral Lugo A; Krell T
    Sci Signal; 2014 Apr; 7(320):ra34. PubMed ID: 24714571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides.
    Wadhams GH; Martin AC; Armitage JP
    Mol Microbiol; 2000 Jun; 36(6):1222-33. PubMed ID: 10931275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation and control circuits in bacterial chemotaxis.
    Roberts MA; Papachristodoulou A; Armitage JP
    Biochem Soc Trans; 2010 Oct; 38(5):1265-9. PubMed ID: 20863296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.