These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1110 related articles for article (PubMed ID: 16824492)

  • 1. Comparative analysis of event-related potentials during Go/NoGo and CPT: decomposition of electrophysiological markers of response inhibition and sustained attention.
    Kirmizi-Alsan E; Bayraktaroglu Z; Gurvit H; Keskin YH; Emre M; Demiralp T
    Brain Res; 2006 Aug; 1104(1):114-28. PubMed ID: 16824492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on the neural mechanism of inhibition of return by the event-related potential in the Go/NoGo task.
    Tian Y; Yao D
    Biol Psychol; 2008 Oct; 79(2):171-8. PubMed ID: 18524452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Event-related potentials for response inhibition in Parkinson's disease.
    Bokura H; Yamaguchi S; Kobayashi S
    Neuropsychologia; 2005; 43(6):967-75. PubMed ID: 15716167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source analysis of the N2 in a cued Go/NoGo task.
    Bekker EM; Kenemans JL; Verbaten MN
    Brain Res Cogn Brain Res; 2005 Feb; 22(2):221-31. PubMed ID: 15653295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory-induced emotion modulates processes of response inhibition: an event-related potential study.
    Yu F; Yuan J; Luo YJ
    Neuroreport; 2009 Jan; 20(1):25-30. PubMed ID: 18978645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response priming in the Go/NoGo task: the N2 reflects neither inhibition nor conflict.
    Smith JL; Johnstone SJ; Barry RJ
    Clin Neurophysiol; 2007 Feb; 118(2):343-55. PubMed ID: 17140848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological correlates of behavioral response inhibition in patients with obsessive-compulsive disorder.
    Kim MS; Kim YY; Yoo SY; Kwon JS
    Depress Anxiety; 2007; 24(1):22-31. PubMed ID: 16933318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of automatic emotion regulation during a facial Go/Nogo task.
    Zhang W; Lu J
    Biol Psychol; 2012 Feb; 89(2):444-9. PubMed ID: 22200654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood: a Go/Nogo ERP study.
    Jonkman LM
    Brain Res; 2006 Jun; 1097(1):181-93. PubMed ID: 16729977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response inhibition and attention processing in 5- to 7-year-old children with and without symptoms of ADHD: An ERP study.
    Spronk M; Jonkman LM; Kemner C
    Clin Neurophysiol; 2008 Dec; 119(12):2738-52. PubMed ID: 18951061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence effects support the conflict theory of N2 and P3 in the Go/NoGo task.
    Smith JL; Smith EA; Provost AL; Heathcote A
    Int J Psychophysiol; 2010 Mar; 75(3):217-26. PubMed ID: 19951723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pre-stimulus processing on subsequent events in a warned Go/NoGo paradigm: response preparation, execution and inhibition.
    Smith JL; Johnstone SJ; Barry RJ
    Int J Psychophysiol; 2006 Aug; 61(2):121-33. PubMed ID: 16214250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence effects in the Go/NoGo task: inhibition and facilitation.
    Thomas SJ; Gonsalvez CJ; Johnstone SJ
    Int J Psychophysiol; 2009 Dec; 74(3):209-19. PubMed ID: 19751776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship of N2 and P3 to inhibitory processing of social drinkers in a Go/NoGo task.
    Oddy BW; Barry RJ
    Int J Psychophysiol; 2009 Jun; 72(3):323-30. PubMed ID: 19250950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information processing differences and similarities in adults with dyslexia and adults with Attention Deficit Hyperactivity Disorder during a Continuous Performance Test: a study of cortical potentials.
    Dhar M; Been PH; Minderaa RB; Althaus M
    Neuropsychologia; 2010 Aug; 48(10):3045-56. PubMed ID: 20600194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response inhibition and interference control in children with AD/HD: a visual ERP investigation.
    Johnstone SJ; Barry RJ; Markovska V; Dimoska A; Clarke AR
    Int J Psychophysiol; 2009 May; 72(2):145-53. PubMed ID: 19095016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased NoGo-anteriorisation in first-episode schizophrenia patients during Continuous Performance Test.
    Kleinlogel H; Strik W; Begré S
    Clin Neurophysiol; 2007 Dec; 118(12):2683-91. PubMed ID: 17910935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of task complexity on ERP components in Go/Nogo tasks.
    Gajewski PD; Falkenstein M
    Int J Psychophysiol; 2013 Mar; 87(3):273-8. PubMed ID: 22906814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological correlates for response inhibition in intellectually gifted children: a Go/NoGo study.
    Duan X; Shi J; Wu J; Mou Y; Cui H; Wang G
    Neurosci Lett; 2009 Jun; 457(1):45-8. PubMed ID: 19429159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual sensory processing deficit in the occipital region in children with attention-deficit / hyperactivity disorder as revealed by event-related potentials during cued continuous performance test.
    Nazari MA; Berquin P; Missonnier P; Aarabi A; Debatisse D; De Broca A; Wallois F
    Neurophysiol Clin; 2010 Jun; 40(3):137-49. PubMed ID: 20513613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.