These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 16824600)
1. Modelling chronic exposure to contaminated soil: a toxicokinetic approach with the terrestrial snail Helix aspersa. Gimbert F; de Vaufleury A; Douay F; Scheifler R; Coeurdassier M; Badot PM Environ Int; 2006 Sep; 32(7):866-75. PubMed ID: 16824600 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and dynamic aspects of soil-plant-snail transfer of cadmium in the field. Gimbert F; Mench M; Coeurdassier M; Badot PM; de Vaufleury A Environ Pollut; 2008 Apr; 152(3):736-45. PubMed ID: 17693002 [TBL] [Abstract][Full Text] [Related]
3. Long-term responses of snails exposed to cadmium-contaminated soils in a partial life-cycle experiment. Gimbert F; de Vaufleury A; Douay F; Coeurdassier M; Scheifler R; Badot PM Ecotoxicol Environ Saf; 2008 May; 70(1):138-46. PubMed ID: 17644178 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of cadmium uptake and subcellular partitioning in the earthworm Eisenia fetida exposed to cadmium-contaminated soil. Li L; Zhou D; Wang P; Peijnenburg WJ Arch Environ Contam Toxicol; 2009 Nov; 57(4):718-24. PubMed ID: 19234863 [TBL] [Abstract][Full Text] [Related]
5. [Effects of heavy metals on snail development. Use of snails as bio-indicators of heavy metal pollution for the preservation of human health]. Gomot A Bull Acad Natl Med; 1997 Jan; 181(1):59-74; discussion 74-5. PubMed ID: 9162514 [TBL] [Abstract][Full Text] [Related]
6. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data. Pauget B; Gimbert F; Scheifler R; Coeurdassier M; de Vaufleury A Sci Total Environ; 2012 Aug; 431():413-25. PubMed ID: 22728924 [TBL] [Abstract][Full Text] [Related]
7. Use of chemical methods to assess Cd and Pb bioavailability to the snail Cantareus aspersus: a first attempt taking into account soil characteristics. Pauget B; Gimbert F; Coeurdassier M; Scheifler R; de Vaufleury A J Hazard Mater; 2011 Sep; 192(3):1804-11. PubMed ID: 21813240 [TBL] [Abstract][Full Text] [Related]
8. "Nonavailable" soil cadmium is bioavailable to snails: evidence from isotopic dilution experiments. Scheifler R; Schwartz C; Echevarria G; DE Vaufleury A; Badot PM; Morel JL Environ Sci Technol; 2003 Jan; 37(1):81-6. PubMed ID: 12542294 [TBL] [Abstract][Full Text] [Related]
9. Standard use conditions of terrestrial gastropods in active biomonitoring of soil contamination. Viard B; Maul A; Pihan JC J Environ Monit; 2004 Feb; 6(2):103-7. PubMed ID: 14760452 [TBL] [Abstract][Full Text] [Related]
10. Is the cadmium uptake from soil important in bioaccumulation and toxic effects for snails? Coeurdassier M; Vaufleury AG; Lovy C; Badot PM Ecotoxicol Environ Saf; 2002 Nov; 53(3):425-31. PubMed ID: 12485588 [TBL] [Abstract][Full Text] [Related]
11. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil. Smith BA; Egeler P; Gilberg D; Hendershot W; Stephenson GL Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851 [TBL] [Abstract][Full Text] [Related]
12. Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails: metal bioavailability and bioaccumulation. Gomot-de VA; Pihan F Environ Toxicol Chem; 2002 Apr; 21(4):820-7. PubMed ID: 11951957 [TBL] [Abstract][Full Text] [Related]
13. How terrestrial snails can be used in risk assessment of soils. de Vaufleury A; Coeurdassier M; Pandard P; Scheifler R; Lovy C; Crini N; Badot PM Environ Toxicol Chem; 2006 Mar; 25(3):797-806. PubMed ID: 16566165 [TBL] [Abstract][Full Text] [Related]
15. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails. Scheifler R; Ben Brahim M; Gomot-de Vaufleury A; Carnus JM; Badot PM Environ Pollut; 2003; 122(3):343-50. PubMed ID: 12547523 [TBL] [Abstract][Full Text] [Related]
16. Cadmium bioaccumulation factors for terrestrial species: application of the mechanistic bioaccumulation model OMEGA to explain field data. Veltman K; Huijbregts MA; Hendriks AJ Sci Total Environ; 2008 Dec; 406(3):413-8. PubMed ID: 18722646 [TBL] [Abstract][Full Text] [Related]
17. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Manousaki E; Kadukova J; Papadantonakis N; Kalogerakis N Environ Res; 2008 Mar; 106(3):326-32. PubMed ID: 17543928 [TBL] [Abstract][Full Text] [Related]
18. How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Gimbert F; Vijver MG; Coeurdassier M; Scheifler R; Peijnenburg WJ; Badot PM; de Vaufleury A Environ Toxicol Chem; 2008 Jun; 27(6):1284-92. PubMed ID: 18229974 [TBL] [Abstract][Full Text] [Related]
19. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.). Zhao ZQ; Zhu YG; Li HY; Smith SE; Smith FA Environ Int; 2004 Jan; 29(7):973-8. PubMed ID: 14592574 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneity of cadmium concentration in soil as a source of uncertainty in plant uptake and its implications for human health risk assessment. Millis PR; Ramsey MH; John EA Sci Total Environ; 2004 Jun; 326(1-3):49-53. PubMed ID: 15142764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]