BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 16825305)

  • 1. Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina.
    Gill SB; Veruki ML; Hartveit E
    J Physiol; 2006 Sep; 575(Pt 3):739-59. PubMed ID: 16825305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina.
    Veruki ML; Gill SB; Hartveit E
    J Physiol; 2007 May; 581(Pt 1):203-19. PubMed ID: 17331993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina.
    Veruki ML; Mørkve SH; Hartveit E
    J Physiol; 2003 Jun; 549(Pt 3):759-74. PubMed ID: 12702738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retina.
    Mørkve SH; Hartveit E
    J Physiol; 2009 Aug; 587(Pt 15):3813-30. PubMed ID: 19528247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the glycinergic input to bipolar cells of the mouse retina.
    Ivanova E; Müller U; Wässle H
    Eur J Neurosci; 2006 Jan; 23(2):350-64. PubMed ID: 16420443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory inputs to an inhibitory interneuron: Spontaneous postsynaptic currents and GABA
    Beltrán-Matas P; Castilho Á; Tencer B; Veruki ML; Hartveit E
    Eur J Neurosci; 2022 Mar; 55(6):1442-1470. PubMed ID: 35236011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice.
    Weiss J; O'Sullivan GA; Heinze L; Chen HX; Betz H; Wässle H
    Mol Cell Neurosci; 2008 Jan; 37(1):40-55. PubMed ID: 17920294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meclofenamic acid blocks electrical synapses of retinal AII amacrine and on-cone bipolar cells.
    Veruki ML; Hartveit E
    J Neurophysiol; 2009 May; 101(5):2339-47. PubMed ID: 19279153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinctive glycinergic currents with fast and slow kinetics in thalamus.
    Ghavanini AA; Mathers DA; Kim HS; Puil E
    J Neurophysiol; 2006 Jun; 95(6):3438-48. PubMed ID: 16554506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses.
    Trexler EB; Li W; Massey SC
    J Neurophysiol; 2005 Mar; 93(3):1476-85. PubMed ID: 15525810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamatergic input is coded by spike frequency at the soma and proximal dendrite of AII amacrine cells in the mouse retina.
    Tamalu F; Watanabe S
    Eur J Neurosci; 2007 Jun; 25(11):3243-52. PubMed ID: 17552993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of inhibitory postsynaptic currents in rod bipolar cells of the mouse retina.
    Frech MJ; Backus KH
    Vis Neurosci; 2004; 21(4):645-52. PubMed ID: 15579227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic inhibition differentially shapes transmission in distinct circuits in the mouse retina.
    Eggers ED; McCall MA; Lukasiewicz PD
    J Physiol; 2007 Jul; 582(Pt 2):569-82. PubMed ID: 17463042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells.
    Eggers ED; Lukasiewicz PD
    J Physiol; 2006 Apr; 572(Pt 1):215-25. PubMed ID: 16439422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage dependence of the glycine receptor-channel kinetics in the zebrafish hindbrain.
    Legendre P
    J Neurophysiol; 1999 Nov; 82(5):2120-9. PubMed ID: 10561392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells.
    Cui J; Ma YP; Lipton SA; Pan ZH
    J Physiol; 2003 Dec; 553(Pt 3):895-909. PubMed ID: 14514876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling.
    Veruki ML; Zhou Y; Castilho Á; Morgans CW; Hartveit E
    J Neurosci; 2019 Jan; 39(4):627-650. PubMed ID: 30459218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor and transmitter release properties set the time course of retinal inhibition.
    Eggers ED; Lukasiewicz PD
    J Neurosci; 2006 Sep; 26(37):9413-25. PubMed ID: 16971525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-dependent modulation of glycine receptor activation recorded from the zebrafish larvae hindbrain.
    Rigo JM; Legendre P
    Neuroscience; 2006 Jun; 140(2):389-402. PubMed ID: 16564635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of single-channel properties to the time course and amplitude variance of quantal glycine currents recorded in rat motoneurons.
    Singer JH; Berger AJ
    J Neurophysiol; 1999 Apr; 81(4):1608-16. PubMed ID: 10200197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.