BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16825746)

  • 1. Simulations to design an online motion compensation system for scanned particle beams.
    Grözinger SO; Rietzel E; Li Q; Bert C; Haberer T; Kraft G
    Phys Med Biol; 2006 Jul; 51(14):3517-31. PubMed ID: 16825746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of interplay effects of scanned particle beams and moving targets.
    Bert C; Grözinger SO; Rietzel E
    Phys Med Biol; 2008 May; 53(9):2253-65. PubMed ID: 18401063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online compensation for target motion with scanned particle beams: simulation environment.
    Li Q; Groezinger SO; Haberer T; Rietzel E; Kraft G
    Phys Med Biol; 2004 Jul; 49(14):3029-46. PubMed ID: 15357180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view.
    McQuaid D; Webb S
    Phys Med Biol; 2006 Oct; 51(19):4819-39. PubMed ID: 16985273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental verification of a real-time compensation functionality for dose changes due to target motion in scanned particle therapy.
    Luchtenborg R; Saito N; Durante M; Bert C
    Med Phys; 2011 Oct; 38(10):5448-58. PubMed ID: 21992364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gated irradiation with scanned particle beams.
    Bert C; Gemmel A; Saito N; Rietzel E
    Int J Radiat Oncol Biol Phys; 2009 Mar; 73(4):1270-5. PubMed ID: 19251099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breathing interplay effects during proton beam scanning: simulation and statistical analysis.
    Seco J; Robertson D; Trofimov A; Paganetti H
    Phys Med Biol; 2009 Jul; 54(14):N283-94. PubMed ID: 19550002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumour tracking with scanned proton beams: assessing the accuracy and practicalities.
    van de Water S; Kreuger R; Zenklusen S; Hug E; Lomax AJ
    Phys Med Biol; 2009 Nov; 54(21):6549-63. PubMed ID: 19826204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.
    Jiang R; Barnett RB; Chow JC; Chen JZ
    Phys Med Biol; 2007 Mar; 52(5):1469-84. PubMed ID: 17301465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D Monte Carlo simulation of proton beam scanning: modelling of variations in time and space to study the interplay between scanning pattern and time-dependent patient geometry.
    Paganetti H; Jiang H; Trofimov A
    Phys Med Biol; 2005 Mar; 50(5):983-90. PubMed ID: 15798270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems.
    Panettieri V; Wennberg B; Gagliardi G; Duch MA; Ginjaume M; Lax I
    Phys Med Biol; 2007 Jul; 52(14):4265-81. PubMed ID: 17664607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion.
    Kanagaki B; Read PW; Molloy JA; Larner JM; Sheng K
    Phys Med Biol; 2007 Jan; 52(1):243-55. PubMed ID: 17183139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4D treatment planning for scanned ion beams.
    Bert C; Rietzel E
    Radiat Oncol; 2007 Jul; 2():24. PubMed ID: 17608919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A beam source model for scanned proton beams.
    Kimstrand P; Traneus E; Ahnesjö A; Grusell E; Glimelius B; Tilly N
    Phys Med Biol; 2007 Jun; 52(11):3151-68. PubMed ID: 17505095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DMLC motion tracking of moving targets for intensity modulated arc therapy treatment: a feasibility study.
    Zimmerman J; Korreman S; Persson G; Cattell H; Svatos M; Sawant A; Venkat R; Carlson D; Keall P
    Acta Oncol; 2009; 48(2):245-50. PubMed ID: 18720056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of movement-induced dose reduction in target volume: a comparison between photon and proton beam treatment.
    Yoon M; Shin D; Kwak J; Park S; Lim YK; Kim D; Park SY; Lee SB; Shin KH; Kim TH; Cho KH
    Med Dosim; 2009; 34(3):191-201. PubMed ID: 19647628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric consequences of tumour motion due to respiration for a scanned proton beam.
    Kraus KM; Heath E; Oelfke U
    Phys Med Biol; 2011 Oct; 56(20):6563-81. PubMed ID: 21937770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the accuracy of the FLUKA code for transport of therapeutic ion beams in matter.
    Sommerer F; Parodi K; Ferrari A; Poljanc K; Enghardt W; Aiginger H
    Phys Med Biol; 2006 Sep; 51(17):4385-98. PubMed ID: 16912388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy?
    Webb S
    Phys Med Biol; 2006 Mar; 51(6):1449-62. PubMed ID: 16510955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct aperture optimization of breast IMRT and the dosimetric impact of respiration motion.
    Zhang G; Jiang Z; Shepard D; Zhang B; Yu C
    Phys Med Biol; 2006 Oct; 51(20):N357-69. PubMed ID: 17019024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.