BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16826278)

  • 1. Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis.
    Craig SE; Lohrenz SE; Lee Z; Mahoney KL; Kirkpatrick GJ; Schofield OM; Steward RG
    Appl Opt; 2006 Jul; 45(21):5414-25. PubMed ID: 16826278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote sensing estimation of colored dissolved organic matter (CDOM) from GOCI measurements in the Bohai Sea and Yellow Sea.
    Ling Z; Sun D; Wang S; Qiu Z; Huan Y; Mao Z; He Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):6872-6885. PubMed ID: 31875926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral variability of sea surface skylight reflectance and its effect on ocean color.
    Cui TW; Song QJ; Tang JW; Zhang J
    Opt Express; 2013 Oct; 21(21):24929-41. PubMed ID: 24150336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical relationships for remote sensing reflectance and Noctiluca scintillans cell density in the northeastern Arabian Sea.
    Pandi SR; Baliarsingh SK; Lotliker AA; Sarma NS; Tripathy SC
    Mar Pollut Bull; 2020 Dec; 161(Pt B):111770. PubMed ID: 33120037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of hyperspectral reflectance for optically complex turbid inland lakes: test of a new scheme and implications for inversion algorithms.
    Sun D; Hu C; Qiu Z; Wang S
    Opt Express; 2015 Jun; 23(11):A718-40. PubMed ID: 26072895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery.
    Amin R; Zhou J; Gilerson A; Gross B; Moshary F; Ahmed S
    Opt Express; 2009 May; 17(11):9126-44. PubMed ID: 19466162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertical migration of Karenia brevis in the northeastern Gulf of Mexico observed from glider measurements.
    Hu C; Barnes BB; Qi L; Lembke C; English D
    Harmful Algae; 2016 Sep; 58():59-65. PubMed ID: 28073459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniqueness in remote sensing of the inherent optical properties of ocean water.
    Sydor M; Gould RW; Arnone RA; Haltrin VI; Goode W
    Appl Opt; 2004 Apr; 43(10):2156-62. PubMed ID: 15074426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties.
    Lyon PE; Hoge FE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2004 Nov; 43(31):5886-92. PubMed ID: 15540447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes.
    Xue K; Boss E; Ma R; Shen M
    Appl Opt; 2019 Nov; 58(31):8549-8564. PubMed ID: 31873359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform.
    Lee Z; Ahn YH; Mobley C; Arnone R
    Opt Express; 2010 Dec; 18(25):26313-24. PubMed ID: 21164981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical classification of an urbanized estuary using hyperspectral remote sensing reflectance.
    Turner KJ; Tzortziou M; Grunert BK; Goes J; Sherman J
    Opt Express; 2022 Nov; 30(23):41590-41612. PubMed ID: 36366633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison.
    Hu C; Barnes BB; Qi L; Corcoran AA
    Sensors (Basel); 2015 Jan; 15(2):2873-87. PubMed ID: 25635412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay.
    Le C; Hu C
    Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interpretation of spatial distribution pattern for dissolved inorganic nitrogen concentration in coastal estuary using hyperspectral data].
    Zhang D; Xu Y; Zhang Y; Li H
    Huan Jing Ke Xue; 2010 Jun; 31(6):1435-41. PubMed ID: 20698253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Karenia brevis bloom patterns on the west Florida shelf between 2003 and 2019: Integration of field and satellite observations.
    Hu C; Yao Y; Cannizzaro JP; Garrett M; Harper M; Markley L; Villac C; Hubbard K
    Harmful Algae; 2022 Aug; 117():102289. PubMed ID: 35944949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.
    Lee Z; Shang S; Hu C; Zibordi G
    Appl Opt; 2014 May; 53(15):3301-10. PubMed ID: 24922219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico.
    Qi L; Hu C; Barnes BB; Lee Z
    Harmful Algae; 2017 Jun; 66():40-46. PubMed ID: 28602252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.
    Lin J; Cao W; Wang G; Hu S
    Appl Opt; 2013 Jun; 52(18):4249-57. PubMed ID: 23842167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.
    Reichardt TA; Collins AM; McBride RC; Behnke CA; Timlin JA
    Appl Opt; 2014 Aug; 53(24):F31-45. PubMed ID: 25321139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.