BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16826500)

  • 21. Daily and circadian melatonin release in vitro by the pineal organ of two nocturnal teleost species: Senegal sole (Solea senegalensis) and tench (Tinca tinca).
    Oliveira C; Garcia EM; López-Olmeda JF; Sánchez-Vázquez FJ
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jul; 153(3):297-302. PubMed ID: 19272458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of scheduled forced wheel activity on body weight in male F344 rats undergoing chronic circadian desynchronization.
    Tsai LL; Tsai YC
    Int J Obes (Lond); 2007 Sep; 31(9):1368-77. PubMed ID: 17356527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal ecology and activity patterns of six species of tropical night lizards (Squamata: Xantusiidae: Lepidophyma) from Mexico.
    Arenas-Moreno DM; Santos-Bibiano R; Muñoz-Nolasco FJ; Charruau P; Méndez-de la Cruz FR
    J Therm Biol; 2018 Jul; 75():97-105. PubMed ID: 30017058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unusual change in activity pattern at cool temperature in a reptile (Sphenodon punctatus).
    Vermunt A; Hare KM; Besson AA
    J Therm Biol; 2014 May; 42():40-5. PubMed ID: 24802147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of food type on specific dynamic action of the Chinese skink Eumeces chinensis.
    Pan ZC; Ji X; Lu HL; Ma XM
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Jan; 140(1):151-5. PubMed ID: 15664324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A morph-specific daily cycle in the rate of JH biosynthesis underlies a morph-specific daily cycle in the hemolymph JH titer in a wing-polymorphic cricket.
    Zhao Z; Zera AJ
    J Insect Physiol; 2004 Oct; 50(10):965-73. PubMed ID: 15518664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energetics of lizard embryos are not canalized by thermal acclimation.
    Angilletta MJ; Lee V; Silva AC
    Physiol Biochem Zool; 2006; 79(3):573-80. PubMed ID: 16691523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlations between the circadian patterns of body temperature, metabolism and breathing in rats.
    Mortola JP
    Respir Physiol Neurobiol; 2007 Feb; 155(2):137-46. PubMed ID: 16815760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of temperature on the liver circadian clock in the ruin lizard Podarcis sicula.
    Malatesta M; Frigato E; Baldelli B; Battistelli S; Foà A; Bertolucci C
    Microsc Res Tech; 2007 Jul; 70(7):578-84. PubMed ID: 17262789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parietalectomy and thermal selection in the lizard Sceloporus magister.
    Engbretson GA; Hutchison VH
    J Exp Zool; 1976 Oct; 198(1):29-38. PubMed ID: 978159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative phylogeography of three skink species (Oligosoma moco, O. smithi, O. suteri; Reptilia: Scincidae) in northeastern New Zealand.
    Hare KM; Daugherty CH; Chapple DG
    Mol Phylogenet Evol; 2008 Jan; 46(1):303-15. PubMed ID: 17911035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seasonal modulation of the 8-and 24-hour rhythms of ondansetron tolerance in mice.
    Khedhaier A; Ben-Attia M; Gadacha W; Sani M; Reinberg A; Boughattas NA
    Chronobiol Int; 2007; 24(6):1199-212. PubMed ID: 18075807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resting metabolic expenditure as a potential source of variation in growth rates of the sagebrush lizard.
    Sears MW
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Feb; 140(2):171-7. PubMed ID: 15748856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy acquisition and allocation in an ectothermic predator exposed to a common environmental stressor.
    DuRant SE; Hopkins WA; Talent LG
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Apr; 145(3):442-8. PubMed ID: 17374566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: Broader implications.
    Klok CJ; Chown SL
    J Insect Physiol; 2005 Jul; 51(7):789-801. PubMed ID: 15907926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internal desynchronization in a model of night-work by forced activity in rats.
    Salgado-Delgado R; Angeles-Castellanos M; Buijs MR; Escobar C
    Neuroscience; 2008 Jun; 154(3):922-31. PubMed ID: 18472343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii).
    Valentinuzzi VS; Oda GA; Araujo JF; Ralph MR
    Chronobiol Int; 2009 Jan; 26(1):14-27. PubMed ID: 19142755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian rhythm of temperature selection in a nocturnal lizard.
    Refinetti R; Susalka SJ
    Physiol Behav; 1997 Aug; 62(2):331-6. PubMed ID: 9251976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of temperature on circadian rhythm in the Japanese honeybee, Apis cerana japonica.
    Fuchikawa T; Shimizu I
    J Insect Physiol; 2007 Nov; 53(11):1179-87. PubMed ID: 17655856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.