These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1682803)

  • 1. Reduction to homozygosity is the predominant spontaneous mutational event in cultured human lymphoblastoid cells.
    Klinedinst DK; Drinkwater NR
    Mutat Res; 1991; 250(1-2):365-74. PubMed ID: 1682803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allelic losses in mutations at the aprt locus of human lymphoblastoid cells.
    Fujimori A; Tachibana A; Tatsumi K
    Mutat Res; 1992 Sep; 269(1):55-62. PubMed ID: 1381471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for high-frequency allele loss at the aprt locus in TK6 human lymphoblasts.
    Smith LE; Grosovsky AJ
    Mutat Res; 1993 Oct; 289(2):245-54. PubMed ID: 7690893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of an APRT heterozygote from TK6 human lymphoblasts: predominance of multi-locus loss of heterozygosity among spontaneous APRT-mutants.
    Pongsaensook P; Smith LE; Grosovsky AJ
    Mutat Res; 1997 Jun; 377(1):27-36. PubMed ID: 9219576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of spontaneous loss of heterozygosity mutations in Aprt heterozygous mice.
    Van Sloun PP; Wijnhoven SW; Kool HJ; Slater R; Weeda G; van Zeeland AA; Lohman PH; Vrieling H
    Nucleic Acids Res; 1998 Nov; 26(21):4888-94. PubMed ID: 9776749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of heterozygosity in mammalian cell mutagenesis: molecular analysis of spontaneous mutations at the aprt locus in CHO cells.
    Ward MA; Yu M; Glickman BW; Grosovsky AJ
    Carcinogenesis; 1990 Sep; 11(9):1485-90. PubMed ID: 1976045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency deletion event at aprt locus of CHO cells: detection and characterization of endpoints.
    Dewyse P; Bradley WE
    Somat Cell Mol Genet; 1989 Jan; 15(1):19-28. PubMed ID: 2916161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of second-step mutations of class II and class III CHO aprt heterozygotes: chromosomal differences in deletion frequencies.
    Belouchi A; Bradley WE
    Somat Cell Mol Genet; 1991 May; 17(3):277-86. PubMed ID: 1675490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of heterozygosity: the most frequent cause of recessive phenotype expression at the heterozygous human adenine phosphoribosyltransferase locus.
    Zhu Y; Stambrook PJ; Tischfield JA
    Mol Carcinog; 1993; 8(3):138-44. PubMed ID: 8216732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of alleles in aprt mutants of CHO cells demonstrated by BclI restriction-fragment-length variation.
    Dewyse P; Bradley WE
    Somat Cell Mol Genet; 1990 May; 16(3):225-30. PubMed ID: 1972816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intervention of somatic mutational events in vivo by a germline defect at the adenine phosphoribosyltransferase locus.
    Hakoda M; Kamatani N; Kurumada S; Hirai Y; Sakamoto K; Yamanaka H; Terai C; Kashiwazaki S
    Hum Genet; 1997 Feb; 99(2):164-70. PubMed ID: 9048914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of ultraviolet light-induced mutations at the heterozygous aprt locus in Chinese hamster ovary cells.
    Drobetsky EA; Glickman BW
    Mutat Res; 1990 Oct; 232(2):281-9. PubMed ID: 1977078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous and ionizing radiation induced mutations involve large events when selecting for loss of an autosomal locus.
    Turker M; Walker KA; Jennings CD; Mellon I; Yusufji A; Urano M
    Mutat Res; 1995 Jul; 329(2):97-105. PubMed ID: 7603506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency structural gene deletion as the basis for functional hemizygosity of the adenine phosphoribosyltransferase locus in Chinese hamster ovary cells.
    Adair GM; Stallings RL; Nairn RS; Siciliano MJ
    Proc Natl Acad Sci U S A; 1983 Oct; 80(19):5961-4. PubMed ID: 6310607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic instability on chromosome 16 in a human B lymphoblastoid cell line.
    Smith LE; Grosovsky AJ
    Somat Cell Mol Genet; 1993 Nov; 19(6):515-27. PubMed ID: 7907433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency nonrandom mutational event at the adenine phosphoribosyltransferase (aprt) locus of sib-selected CHO variants heterozygous for aprt.
    Bradley WE; Letovanec D
    Somatic Cell Genet; 1982 Jan; 8(1):51-66. PubMed ID: 7101104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of APRT deficiency in mouse P19 teratocarcinoma stem cell line.
    Cooper GE; DiMartino DL; Turker MS
    Somat Cell Mol Genet; 1991 Mar; 17(2):105-16. PubMed ID: 2011791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benzo[a]pyrenediol-epoxide induces loss of heterozygosity in Chinese hamster ovary cells heterozygous at the aprt locus.
    Mazur-Melnyk M; Stuart GR; Glickman BW
    Mutat Res; 1996 Oct; 358(1):89-96. PubMed ID: 8921979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an apparent hotspot for spontaneous mutation in exon 5 of the Chinese hamster APRT gene.
    Smith DG; Adair GM
    Mutat Res; 1996 Jun; 352(1-2):87-96. PubMed ID: 8676921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of a functional human adenine phosphoribosyltransferase (APRT) gene: identification of a restriction fragment length polymorphism and preliminary analysis of DNAs from APRT-deficient families and cell mutants.
    Stambrook PJ; Dush MK; Trill JJ; Tischfield JA
    Somat Cell Mol Genet; 1984 Jul; 10(4):359-67. PubMed ID: 6087472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.