BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16828144)

  • 1. Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae).
    Demirezen D; Aksoy A; Uruç K
    Chemosphere; 2007 Jan; 66(3):553-7. PubMed ID: 16828144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae).
    Yilmaz DD
    J Hazard Mater; 2007 Aug; 147(1-2):74-7. PubMed ID: 17240053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability.
    Mkandawire M; Taubert B; Dudel EG
    Ecotoxicol Environ Saf; 2006 Sep; 65(1):118-28. PubMed ID: 16029890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.
    Mkandawire M; Taubert B; Dudel EG
    Int J Phytoremediation; 2004; 6(4):347-62. PubMed ID: 15696706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel-induced changes in lipid peroxidation, antioxidative enzymes, and metal accumulation in Lemna gibba.
    Yilmaz DD; Parlak KU
    Int J Phytoremediation; 2011 Sep; 13(8):805-17. PubMed ID: 21972520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters.
    Del-Campo Marín CM; Oron G
    Water Res; 2007 Dec; 41(20):4579-84. PubMed ID: 17643472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation.
    Khellaf N; Zerdaoui M
    Ecotoxicology; 2010 Nov; 19(8):1363-8. PubMed ID: 20680456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.
    Mkandawire M; Dudel EG
    Sci Total Environ; 2005 Jan; 336(1-3):81-9. PubMed ID: 15589251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L.
    Khellaf N; Zerdaoui M
    Bioresour Technol; 2009 Dec; 100(23):6137-40. PubMed ID: 19581083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.
    Megateli S; Semsari S; Couderchet M
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of floating macrophytes (Lemna sp.) to pond modelization.
    Jupsin H; Richard H; Vasel JL
    Water Sci Technol; 2005; 51(12):283-9. PubMed ID: 16114696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed).
    Sobrino AS; Miranda MG; Alvarez C; Quiroz A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(1):107-10. PubMed ID: 20390849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between Free-Floating Plants Is Strongly Driven by Previously Experienced Phosphorus Concentrations in the Water Column.
    Peeters ET; Neefjes RE; Zuidam BG
    PLoS One; 2016; 11(9):e0162780. PubMed ID: 27622519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system.
    Türker OC; Yakar A; Gür N
    J Hazard Mater; 2017 Feb; 324(Pt B):151-159. PubMed ID: 27780623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).
    Demirezen Yilmaz D; Akbulut H
    Int J Phytoremediation; 2011; 13(10):970-84. PubMed ID: 21972565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: microcystin accumulation, detoxication and oxidative stress induction.
    Saqrane S; Ghazali IE; Ouahid Y; Hassni ME; Hadrami IE; Bouarab L; del Campo FF; Oudra B; Vasconcelos V
    Aquat Toxicol; 2007 Aug; 83(4):284-94. PubMed ID: 17582520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of density on seedling growth and glycyrrhizinic acid content in Glycyrrhiza uralensis].
    Sun ZR; Zhai MP; Wang WQ; Li YR
    Zhongguo Zhong Yao Za Zhi; 2007 Nov; 32(21):2222-6, 2281. PubMed ID: 18309659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental contamination of chrysotile asbestos and its toxic effects on growth and physiological and biochemical parameters of Lemna gibba.
    Trivedi AK; Ahmad I; Musthapa MS; Ansari FA; Rahman Q
    Arch Environ Contam Toxicol; 2004 Oct; 47(3):281-9. PubMed ID: 15386121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2,4,6-Trichlorophenol mediated increases in extracellular peroxidase activity in three species of Lemnaceae.
    Biswas DK; Scannell G; Akhmetov N; Fitzpatrick D; Jansen MA
    Aquat Toxicol; 2010 Nov; 100(3):289-94. PubMed ID: 20810175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Lemna gibba bioreactor for nitrogen and phosphorus retention, and biomass production in Mediterranean climate.
    Ennabili A; Ezzahri J; Radoux M
    J Environ Manage; 2019 Dec; 252():109627. PubMed ID: 31586747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.