BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

754 related articles for article (PubMed ID: 16828246)

  • 1. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of acrylic-based copolymers for oral insulin delivery.
    Foss AC; Goto T; Morishita M; Peppas NA
    Eur J Pharm Biopharm; 2004 Mar; 57(2):163-9. PubMed ID: 15018971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.
    Sajeesh S; Vauthier C; Gueutin C; Ponchel G; Sharma CP
    Acta Biomater; 2010 Aug; 6(8):3072-80. PubMed ID: 20144748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel polyelectrolyte complexes based on poly(methacrylic acid)-bis(2-aminopropyl)poly(ethylene glycol) for oral protein delivery.
    Sajeesh S; Sharma CP
    J Biomater Sci Polym Ed; 2007; 18(9):1125-39. PubMed ID: 17931503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin.
    Sajeesh S; Bouchemal K; Marsaud V; Vauthier C; Sharma CP
    J Control Release; 2010 Nov; 147(3):377-84. PubMed ID: 20727924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.
    Mundargi RC; Rangaswamy V; Aminabhavi TM
    J Microencapsul; 2011; 28(5):384-94. PubMed ID: 21736523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.
    Nakamura K; Murray RJ; Joseph JI; Peppas NA; Morishita M; Lowman AM
    J Control Release; 2004 Mar; 95(3):589-99. PubMed ID: 15023469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiproteolytic action of orally delivered insulin using pH-responsive hydrogels in a rat burn model.
    Madihally SV; Pantelogianis A; Toner M
    J Surg Res; 2006 Sep; 135(1):187-94. PubMed ID: 16616764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel.
    Huynh DP; Im GJ; Chae SY; Lee KC; Lee DS
    J Control Release; 2009 Jul; 137(1):20-4. PubMed ID: 19285530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of pH-sensitive anionic hydrogel microparticles for oral protein-delivery applications.
    Kim B; Lim SH; Ryoo W
    J Biomater Sci Polym Ed; 2009; 20(4):427-36. PubMed ID: 19228445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM
    Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loading and mobility of spin-labeled insulin in physiologically responsive complexation hydrogels intended for oral administration.
    Besheer A; Wood KM; Peppas NA; Mäder K
    J Control Release; 2006 Mar; 111(1-2):73-80. PubMed ID: 16460830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release behaviour and biocompatibility of drug-loaded pH sensitive particles.
    Sipahigil O; Gürsoy A; Cakalağaoğlu F; Okar I
    Int J Pharm; 2006 Mar; 311(1-2):130-8. PubMed ID: 16427223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly methacrylic acid-alginate semi-IPN microparticles for oral delivery of insulin: a preliminary investigation.
    Sajeesh S; Sharma CP
    J Biomater Appl; 2004 Jul; 19(1):35-45. PubMed ID: 15245642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of smart delivery system for ascorbic acid using pH-responsive P(MAA-co-EGMA) hydrogel microparticles.
    Lee E; Kim K; Choi M; Lee Y; Park JW; Kim B
    Drug Deliv; 2010 Nov; 17(8):573-80. PubMed ID: 20626233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone.
    Wang K; Xu X; Wang Y; Yan X; Guo G; Huang M; Luo F; Zhao X; Wei Y; Qian Z
    Int J Pharm; 2010 Apr; 389(1-2):130-8. PubMed ID: 20096758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids.
    Perakslis E; Tuesca A; Lowman A
    J Biomater Sci Polym Ed; 2007; 18(12):1475-90. PubMed ID: 17988515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel controlled drug delivery system based on pH-responsive hydrogels included in soft gelatin capsules.
    Frutos G; Prior-Cabanillas A; París R; Quijada-Garrido I
    Acta Biomater; 2010 Dec; 6(12):4650-6. PubMed ID: 20643229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.