BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16828281)

  • 1. Peptides in lipid bilayers: the power of simple models.
    Killian JA; Nyholm TK
    Curr Opin Struct Biol; 2006 Aug; 16(4):473-9. PubMed ID: 16828281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring.
    de Planque MR; Killian JA
    Mol Membr Biol; 2003; 20(4):271-84. PubMed ID: 14578043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers.
    Calvez P; Bussières S; Eric Demers ; Salesse C
    Biochimie; 2009 Jun; 91(6):718-33. PubMed ID: 19345719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-associated proteins and peptides.
    Lensink MF
    Methods Mol Biol; 2008; 443():161-79. PubMed ID: 18446287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How protein transmembrane segments sense the lipid environment.
    Nyholm TK; Ozdirekcan S; Killian JA
    Biochemistry; 2007 Feb; 46(6):1457-65. PubMed ID: 17279611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide.
    Polyansky AA; Volynsky PE; Arseniev AS; Efremov RG
    J Phys Chem B; 2009 Jan; 113(4):1107-19. PubMed ID: 19125640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics.
    Deshayes S; Morris MC; Divita G; Heitz F
    J Pept Sci; 2006 Dec; 12(12):758-65. PubMed ID: 17131287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anchor-lipid monolayers at the air-water interface; prearranging of model membrane systems.
    Atanasova PP; Atanasov V; Köper I
    Langmuir; 2007 Jul; 23(14):7672-8. PubMed ID: 17559241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers.
    Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U
    Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of antimicrobial peptides into membranes: a combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles.
    Dittmer J; Thøgersen L; Underhaug J; Bertelsen K; Vosegaard T; Pedersen JM; Schiøtt B; Tajkhorshid E; Skrydstrup T; Nielsen NC
    J Phys Chem B; 2009 May; 113(19):6928-37. PubMed ID: 19368399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase behavior and the partitioning of caveolin-1 scaffolding domain peptides in model lipid bilayers.
    Horton MR; Rädler J; Gast AP
    J Colloid Interface Sci; 2006 Dec; 304(1):67-76. PubMed ID: 17022989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association.
    Lee J; Im W
    J Am Chem Soc; 2008 May; 130(20):6456-62. PubMed ID: 18422318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-supported bilayers with transmembrane proteins: role of the polymer cushion revisited.
    Merzlyakov M; Li E; Gitsov I; Hristova K
    Langmuir; 2006 Nov; 22(24):10145-51. PubMed ID: 17107013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striated domains: self-organizing ordered assemblies of transmembrane alpha-helical peptides and lipids in bilayers.
    de Kruijff B; Killian JA; Ganchev DN; Rinia HA; Sparr E
    Biol Chem; 2006 Mar; 387(3):235-41. PubMed ID: 16542143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide probes for protein transmembrane domains.
    Slivka PF; Wong J; Caputo GA; Yin H
    ACS Chem Biol; 2008 Jul; 3(7):402-11. PubMed ID: 18533658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-crosslinking analysis of preferential interactions between a transmembrane peptide and matching lipids.
    Ridder AN; Spelbrink RE; Demmers JA; Rijkers DT; Liskamp RM; Brunner J; Heck AJ; de Kruijff B; Killian JA
    Biochemistry; 2004 Apr; 43(15):4482-9. PubMed ID: 15078094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.