BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16828794)

  • 1. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.
    Gupte SA; Levine RJ; Gupte RS; Young ME; Lionetti V; Labinskyy V; Floyd BC; Ojaimi C; Bellomo M; Wolin MS; Recchia FA
    J Mol Cell Cardiol; 2006 Aug; 41(2):340-9. PubMed ID: 16828794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart.
    Gupte RS; Vijay V; Marks B; Levine RJ; Sabbah HN; Wolin MS; Recchia FA; Gupte SA
    J Card Fail; 2007 Aug; 13(6):497-506. PubMed ID: 17675065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure.
    Labinskyy V; Bellomo M; Chandler MP; Young ME; Lionetti V; Qanud K; Bigazzi F; Sampietro T; Stanley WC; Recchia FA
    J Pharmacol Exp Ther; 2007 Apr; 321(1):165-71. PubMed ID: 17215446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction.
    Tsutsumi T; Ide T; Yamato M; Kudou W; Andou M; Hirooka Y; Utsumi H; Tsutsui H; Sunagawa K
    Cardiovasc Res; 2008 Mar; 77(4):713-21. PubMed ID: 18065771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.
    Serpillon S; Floyd BC; Gupte RS; George S; Kozicky M; Neito V; Recchia F; Stanley W; Wolin MS; Gupte SA
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver.
    Gupte RS; Floyd BC; Kozicky M; George S; Ungvari ZI; Neito V; Wolin MS; Gupte SA
    Free Radic Biol Med; 2009 Aug; 47(3):219-28. PubMed ID: 19230846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased superoxide production in hypertensive patients with diabetes mellitus: role of nitric oxide synthase.
    Dixon LJ; Hughes SM; Rooney K; Madden A; Devine A; Leahey W; Henry W; Johnston GD; McVeigh GE
    Am J Hypertens; 2005 Jun; 18(6):839-43. PubMed ID: 15925745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-6-phosphate dehydrogenase deficiency decreases vascular superoxide and atherosclerotic lesions in apolipoprotein E(-/-) mice.
    Matsui R; Xu S; Maitland KA; Mastroianni R; Leopold JA; Handy DE; Loscalzo J; Cohen RA
    Arterioscler Thromb Vasc Biol; 2006 Apr; 26(4):910-6. PubMed ID: 16439706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases.
    Dudley SC; Hoch NE; McCann LA; Honeycutt C; Diamandopoulos L; Fukai T; Harrison DG; Dikalov SI; Langberg J
    Circulation; 2005 Aug; 112(9):1266-73. PubMed ID: 16129811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.
    Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA
    PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH oxidase and uncoupled nitric oxide synthase are major sources of reactive oxygen species in oral squamous cell carcinoma. Potential implications for immune regulation in high oxidative stress conditions.
    Czesnikiewicz-Guzik M; Lorkowska B; Zapala J; Czajka M; Szuta M; Loster B; Guzik TJ; Korbut R
    J Physiol Pharmacol; 2008 Mar; 59(1):139-52. PubMed ID: 18441394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH oxidase-dependent redox signaling in human heart failure: relationship between the left and right ventricle.
    Nediani C; Borchi E; Giordano C; Baruzzo S; Ponziani V; Sebastiani M; Nassi P; Mugelli A; d'Amati G; Cerbai E
    J Mol Cell Cardiol; 2007 Apr; 42(4):826-34. PubMed ID: 17346742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.
    Zhao G; Zhao Y; Wang X; Xu Y
    Neurochem Int; 2012 Jul; 61(2):146-55. PubMed ID: 22580330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries.
    Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction.
    Qin F; Simeone M; Patel R
    Free Radic Biol Med; 2007 Jul; 43(2):271-81. PubMed ID: 17603936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells.
    Selemidis S; Dusting GJ; Peshavariya H; Kemp-Harper BK; Drummond GR
    Cardiovasc Res; 2007 Jul; 75(2):349-58. PubMed ID: 17568572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal NADPH oxidase 2 activity increases in a neonatal rat model of necrotizing enterocolitis.
    Welak SR; Rentea RM; Teng RJ; Heinzerling N; Biesterveld B; Liedel JL; Pritchard KA; Fredrich KM; Gourlay DM
    PLoS One; 2014; 9(12):e115317. PubMed ID: 25517730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart rate variability in a progressive heart failure model with rapid ventricular pacing.
    Ootaki C; Manzo A; Kamohara K; Popović ZB; Fukamachi K; Ootaki Y
    Heart Surg Forum; 2008; 11(5):E295-9. PubMed ID: 18948244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.
    Doerries C; Grote K; Hilfiker-Kleiner D; Luchtefeld M; Schaefer A; Holland SM; Sorrentino S; Manes C; Schieffer B; Drexler H; Landmesser U
    Circ Res; 2007 Mar; 100(6):894-903. PubMed ID: 17332431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.