These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16828841)

  • 1. Phosphorus removal from wastewater by mineral apatite.
    Bellier N; Chazarenc F; Comeau Y
    Water Res; 2006 Aug; 40(15):2965-71. PubMed ID: 16828841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands.
    Molle P; Liénard A; Grasmick A; Iwema A; Kabbabi A
    Water Sci Technol; 2005; 51(9):193-203. PubMed ID: 16042259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.
    Lemaire R; Yuan Z; Bernet N; Marcos M; Yilmaz G; Keller J
    Biodegradation; 2009 Jun; 20(3):339-50. PubMed ID: 18937035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters.
    Claveau-Mallet D; Wallace S; Comeau Y
    Water Res; 2013 Mar; 47(4):1512-20. PubMed ID: 23305683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of dairy wastewater by water hyacinth.
    Munavalli GR; Saler PS
    Water Sci Technol; 2009; 59(4):713-22. PubMed ID: 19237765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus removal by apatite in horizontal flow constructed wetlands for small communities: pilot and full-scale evidence.
    Harouiya N; Martin Rue S; Prost-Boucle S; Liénar A; Esser D; Molle P
    Water Sci Technol; 2011; 63(8):1629-37. PubMed ID: 21866761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.
    Kuşçu OS; Sponza DT
    J Hazard Mater; 2009 Jan; 161(2-3):787-99. PubMed ID: 18515004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Active' filters for upgrading phosphorus removal from pond systems.
    Shilton A; Pratt S; Drizo A; Mahmood B; Banker S; Billings L; Glenny S; Luo D
    Water Sci Technol; 2005; 51(12):111-6. PubMed ID: 16114672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of nitrate and phosphorus from hydroponic wastewater using a hybrid denitrification filter (HDF).
    Park JB; Craggs RJ; Sukias JP
    Bioresour Technol; 2009 Jul; 100(13):3175-9. PubMed ID: 19303287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation.
    Yetilmezsoy K; Sakar S
    J Hazard Mater; 2008 Mar; 151(2-3):547-58. PubMed ID: 17643817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of iron ochre from mine drainage treatment for removal of phosphorus from wastewater.
    Dobbie KE; Heal KV; Aumônier J; Smith KA; Johnston A; Younger PL
    Chemosphere; 2009 May; 75(6):795-800. PubMed ID: 19195678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus removal by the multipond system sediments receiving agricultural drainage in a headstream watershed.
    Fu Q; Yin CQ; Ma Y
    J Environ Sci (China); 2005; 17(3):404-8. PubMed ID: 16083112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of phosphates from wastewater using converter slag: Kinetics analysis of a completely mixed phosphorus crystallization process.
    Kim EH; Lee DW; Hwang HK; Yim S
    Chemosphere; 2006 Apr; 63(2):192-201. PubMed ID: 16213546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production.
    Hylander LD; Kietlińska A; Renman G; Simán G
    Bioresour Technol; 2006 May; 97(7):914-21. PubMed ID: 15964189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.
    Pratt C; Shilton A
    Water Sci Technol; 2009; 59(8):1673-8. PubMed ID: 19403982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties.
    Bahdod A; El Asri S; Saoiabi A; Coradin T; Laghzizil A
    Water Res; 2009 Feb; 43(2):313-8. PubMed ID: 18986672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological nitrogen and phosphorus removal in UCT-type MBR process.
    Lee H; Han J; Yun Z
    Water Sci Technol; 2009; 59(11):2093-9. PubMed ID: 19494447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ureolytic phosphate precipitation from anaerobic effluents.
    Desmidt E; Verstraete W; Dick J; Meesschaert BD; Carballa M
    Water Sci Technol; 2009; 59(10):1983-8. PubMed ID: 19474493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus retention by granulated apatite: assessing maximum retention capacity, kinetics and retention processes.
    Delgado-González L; Lartiges B; Gautier M; Troesch S; Molle P
    Water Sci Technol; 2021 Feb; 83(4):792-802. PubMed ID: 33617487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of 1H --> 31P NMR cross-polarization in bone apatite and its mineral standards.
    Kaflak A; Kolodziejski W
    Magn Reson Chem; 2008 Apr; 46(4):335-41. PubMed ID: 18306247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.