These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1682932)

  • 1. Swapping of functional domains in voltage-gated K+ channels.
    Stocker M; Pongs O; Hoth M; Heinemann SH; Stühmer W; Schröter KH; Ruppersberg JP
    Proc Biol Sci; 1991 Aug; 245(1313):101-7. PubMed ID: 1682932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchange of conduction pathways between two related K+ channels.
    Hartmann HA; Kirsch GE; Drewe JA; Taglialatela M; Joho RH; Brown AM
    Science; 1991 Feb; 251(4996):942-4. PubMed ID: 2000495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A site accessible to extracellular TEA+ and K+ influences intracellular Mg2+ block of cloned potassium channels.
    Ludewig U; Lorra C; Pongs O; Heinemann SH
    Eur Biophys J; 1993; 22(4):237-47. PubMed ID: 8253052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A K+ channel in Xenopus nerve fibres selectively blocked by bee and snake toxins: binding and voltage-clamp experiments.
    Bräu ME; Dreyer F; Jonas P; Repp H; Vogel W
    J Physiol; 1990 Jan; 420():365-85. PubMed ID: 2324990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor sites for open channel blockers of Shaker voltage-gated potassium channels--molecular approaches.
    Pongs O
    J Recept Res; 1993; 13(1-4):503-12. PubMed ID: 7680721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular K+ specifically modulates a rat brain K+ channel.
    Pardo LA; Heinemann SH; Terlau H; Ludewig U; Lorra C; Pongs O; Stühmer W
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2466-70. PubMed ID: 1549610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
    Lopez GA; Jan YN; Jan LY
    Nature; 1994 Jan; 367(6459):179-82. PubMed ID: 8114915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of internal and external tetraethylammonium block in four homologous K+ channels.
    Taglialatela M; Vandongen AM; Drewe JA; Joho RH; Brown AM; Kirsch GE
    Mol Pharmacol; 1991 Aug; 40(2):299-307. PubMed ID: 1875913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of amino acid residues involved in dendrotoxin block of rat voltage-dependent potassium channels.
    Hurst RS; Busch AE; Kavanaugh MP; Osborne PB; North RA; Adelman JP
    Mol Pharmacol; 1991 Oct; 40(4):572-6. PubMed ID: 1921987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. k-Opioid receptor activation of a dendrotoxin-sensitive potassium channel mediates presynaptic inhibition of mossy fiber neurotransmitter release.
    Simmons ML; Chavkin C
    Mol Pharmacol; 1996 Jul; 50(1):80-5. PubMed ID: 8700123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.
    Aiyar J; Nguyen AN; Chandy KG; Grissmer S
    Biophys J; 1994 Dec; 67(6):2261-4. PubMed ID: 7696467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels.
    Stocker M; Stühmer W; Wittka R; Wang X; Müller R; Ferrus A; Pongs O
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8903-7. PubMed ID: 1701056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of a human cDNA expressing a high voltage-activating, TEA-sensitive, type-A K+ channel which maps to chromosome 1 band p21.
    Rudy B; Sen K; Vega-Saenz de Miera E; Lau D; Ried T; Ward DC
    J Neurosci Res; 1991 Jul; 29(3):401-12. PubMed ID: 1920536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional role of a conserved aspartate in the external mouth of voltage-gated potassium channels.
    Kirsch GE; Pascual JM; Shieh CC
    Biophys J; 1995 May; 68(5):1804-13. PubMed ID: 7612822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channels expressed from rat brain cDNA have delayed rectifier properties.
    Stühmer W; Stocker M; Sakmann B; Seeburg P; Baumann A; Grupe A; Pongs O
    FEBS Lett; 1988 Dec; 242(1):199-206. PubMed ID: 2462513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels.
    Kavanaugh MP; Varnum MD; Osborne PB; Christie MJ; Busch AE; Adelman JP; North RA
    J Biol Chem; 1991 Apr; 266(12):7583-7. PubMed ID: 2019588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of ShIII (Shaw-like) cDNAs encoding a novel high-voltage-activating, TEA-sensitive, type-A K+ channel.
    Vega-Saenz de Miera E; Moreno H; Fruhling D; Kentros C; Rudy B
    Proc Biol Sci; 1992 Apr; 248(1321):9-18. PubMed ID: 1381835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of gating charge immobilization in Shaker potassium channels.
    Bezanilla F; Perozo E; Papazian DM; Stefani E
    Science; 1991 Nov; 254(5032):679-83. PubMed ID: 1948047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The S4-S5 loop contributes to the ion-selective pore of potassium channels.
    Slesinger PA; Jan YN; Jan LY
    Neuron; 1993 Oct; 11(4):739-49. PubMed ID: 8398157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel.
    Isacoff EY; Jan YN; Jan LY
    Nature; 1991 Sep; 353(6339):86-90. PubMed ID: 1881453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.