These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 16829322)

  • 1. Longitudinal and shear mode ultrasound propagation in human skull bone.
    White PJ; Clement GT; Hynynen K
    Ultrasound Med Biol; 2006 Jul; 32(7):1085-96. PubMed ID: 16829322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls.
    Pichardo S; Sin VW; Hynynen K
    Phys Med Biol; 2011 Jan; 56(1):219-50. PubMed ID: 21149950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull.
    Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced ultrasound transmission through the human skull using shear mode conversion.
    Clement GT; White PJ; Hynynen K
    J Acoust Soc Am; 2004 Mar; 115(3):1356-64. PubMed ID: 15058357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcranial shear-mode ultrasound: assessment of imaging performance and excitation techniques.
    Yousefi A; Goertz DE; Hynynen K
    IEEE Trans Med Imaging; 2009 May; 28(5):763-74. PubMed ID: 19150789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of ultrasound propagation through ex-vivo human temporal bone.
    Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK
    Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study.
    Pichardo S; Hynynen K
    Phys Med Biol; 2007 Dec; 52(24):7313-32. PubMed ID: 18065841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral image reconstruction for transcranial ultrasound measurement.
    Clement GT
    Phys Med Biol; 2005 Dec; 50(23):5557-72. PubMed ID: 16306652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation, scattering, and absorption of ultrasound in the skull bone.
    Pinton G; Aubry JF; Bossy E; Muller M; Pernot M; Tanter M
    Med Phys; 2012 Jan; 39(1):299-307. PubMed ID: 22225300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz.
    Marsac L; Chauvet D; La Greca R; Boch AL; Chaumoitre K; Tanter M; Aubry JF
    Int J Hyperthermia; 2017 Sep; 33(6):635-645. PubMed ID: 28540778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Guided Acoustic Waves in a Human Skull.
    Estrada H; Gottschalk S; Reiss M; Neuschmelting V; Goldbrunner R; Razansky D
    Ultrasound Med Biol; 2018 Nov; 44(11):2388-2392. PubMed ID: 30093337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of skull porosity on ultrasound transmission and wave mode conversion at large incidence angles.
    Jing B; Strassle Rojas S; Lindsey BD
    Med Phys; 2023 May; 50(5):3092-3102. PubMed ID: 36810723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical note: High-efficient and wireless transcranial ultrasound excitation based on electromagnetic acoustic transducer.
    Huang L; Qiao S; Ling W; Wang W; Feng Q; Cao J; Luo Y
    Med Phys; 2024 Jan; 51(1):662-669. PubMed ID: 37815210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Characterization of an Acoustically and Structurally Matched 3-D-Printed Model for Transcranial Ultrasound Imaging.
    Bai C; Ji M; Bouakaz A; Zong Y; Wan M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):741-748. PubMed ID: 29733278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of bone model geometries on the determination of skull acoustic properties.
    Marchant JK; Clinard SR; Odéen H; Parker DL; Christensen DA
    Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3779. PubMed ID: 37794748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Acoustic Impedance Mismatch at the Bone-Soft Tissue Interface as a Function of Frequency in Transcranial Ultrasound: A Simulation and In Vitro Experimental Study.
    Gupta S; Haiat G; Laporte C; Belanger P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1653-1663. PubMed ID: 33306464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustical properties of 3D printed thermoplastics.
    Antoniou A; Evripidou N; Giannakou M; Constantinides G; Damianou C
    J Acoust Soc Am; 2021 Apr; 149(4):2854. PubMed ID: 33940906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.