These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16829573)

  • 1. Symmetry breaking in individual plasmonic nanoparticles.
    Wang H; Wu Y; Lassiter B; Nehl CL; Hafner JH; Nordlander P; Halas NJ
    Proc Natl Acad Sci U S A; 2006 Jul; 103(29):10856-60. PubMed ID: 16829573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry breaking in gold-silica-gold multilayer nanoshells.
    Hu Y; Noelck SJ; Drezek RA
    ACS Nano; 2010 Mar; 4(3):1521-8. PubMed ID: 20146507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rational design of multimodal asymmetric nanoshells as efficient tunable absorbers within the biological optical window.
    Souri S; Hadilou N; Navid HA; Sadighi Bonabi R; Anvari A
    Sci Rep; 2021 Jul; 11(1):15115. PubMed ID: 34302000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon hybridization in nanoshells with a nonconcentric core.
    Wu Y; Nordlander P
    J Chem Phys; 2006 Sep; 125(12):124708. PubMed ID: 17014201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanorice: a hybrid plasmonic nanostructure.
    Wang H; Brandl DW; Le F; Nordlander P; Halas NJ
    Nano Lett; 2006 Apr; 6(4):827-32. PubMed ID: 16608292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed.
    Zhang S; Bao K; Halas NJ; Xu H; Nordlander P
    Nano Lett; 2011 Apr; 11(4):1657-63. PubMed ID: 21410217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fano resonances in plasmonic nanoparticle aggregates.
    Mirin NA; Bao K; Nordlander P
    J Phys Chem A; 2009 Apr; 113(16):4028-34. PubMed ID: 19371111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells.
    Jain PK; El-Sayed MA
    Nano Lett; 2007 Sep; 7(9):2854-8. PubMed ID: 17676810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reshaping the plasmonic properties of an individual nanoparticle.
    Lassiter JB; Knight MW; Mirin NA; Halas NJ
    Nano Lett; 2009 Dec; 9(12):4326-32. PubMed ID: 19743871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells.
    Chen J; Shen Q; Chen Z; Wang Q; Tang C; Wang Z
    J Chem Phys; 2012 Jun; 136(21):214703. PubMed ID: 22697562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibron and phonon hybridization in dielectric nanostructures.
    Preston TC; Signorell R
    Proc Natl Acad Sci U S A; 2011 Apr; 108(14):5532-6. PubMed ID: 21422288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance.
    Hao F; Sonnefraud Y; Van Dorpe P; Maier SA; Halas NJ; Nordlander P
    Nano Lett; 2008 Nov; 8(11):3983-8. PubMed ID: 18831572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.
    Alabastri A; Yang X; Manjavacas A; Everitt HO; Nordlander P
    ACS Nano; 2016 Apr; 10(4):4835-46. PubMed ID: 27045994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular momentum transfer from swift electrons to non-spherical nanoparticles within the dipolar approximation.
    Briseño-Gómez JL; López-Tercero A; Castellanos-Reyes JÁ; Reyes-Coronado A
    Ultramicroscopy; 2024 Oct; 264():114005. PubMed ID: 38901071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell.
    Pan J; Chen Z; Chen J; Zhan P; Tang CJ; Wang ZL
    Opt Lett; 2012 Apr; 37(7):1181-3. PubMed ID: 22466188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Fano resonances in single layered concentric core-shell particles.
    Sancho-Parramon J; Jelovina D
    Nanoscale; 2014 Nov; 6(22):13555-64. PubMed ID: 25269097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances.
    Li Y; Zhao K; Sobhani H; Bao K; Nordlander P
    J Phys Chem Lett; 2013 Apr; 4(8):1352-7. PubMed ID: 26282152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption Spectroscopy of an Individual Fano Cluster.
    Yorulmaz M; Hoggard A; Zhao H; Wen F; Chang WS; Halas NJ; Nordlander P; Link S
    Nano Lett; 2016 Oct; 16(10):6497-6503. PubMed ID: 27669356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.