These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 16829590)

  • 1. High rate of chimeric gene origination by retroposition in plant genomes.
    Wang W; Zheng H; Fan C; Li J; Shi J; Cai Z; Zhang G; Liu D; Zhang J; Vang S; Lu Z; Wong GK; Long M; Wang J
    Plant Cell; 2006 Aug; 18(8):1791-802. PubMed ID: 16829590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary patterns of chimeric retrogenes in Oryza species.
    Zhou Y; Zhang C
    Sci Rep; 2019 Nov; 9(1):17733. PubMed ID: 31776387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum.
    Jiang SY; Ramachandran S
    PLoS One; 2013; 8(7):e71118. PubMed ID: 23923055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rapid generation of chimerical genes expanding protein diversity in zebrafish.
    Fu B; Chen M; Zou M; Long M; He S
    BMC Genomics; 2010 Nov; 11():657. PubMed ID: 21106061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrogenes in rice (Oryza sativa L. ssp. japonica) exhibit correlated expression with their source genes.
    Sakai H; Mizuno H; Kawahara Y; Wakimoto H; Ikawa H; Kawahigashi H; Kanamori H; Matsumoto T; Itoh T; Gaut BS
    Genome Biol Evol; 2011; 3():1357-68. PubMed ID: 22042334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and analysis of retrogenes in the East Asian nematode Caenorhabditis sp. 5 genome.
    Zhou K; Zou M; Duan M; He S; Wang G
    Genome; 2015 Jul; 58(7):349-55. PubMed ID: 26284988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long terminal repeat retrotransposons of Oryza sativa.
    McCarthy EM; Liu J; Lizhi G; McDonald JF
    Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila.
    Bai Y; Casola C; Feschotte C; Betrán E
    Genome Biol; 2007; 8(1):R11. PubMed ID: 17233920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans.
    Tan S; Cardoso-Moreira M; Shi W; Zhang D; Huang J; Mao Y; Jia H; Zhang Y; Chen C; Shao Y; Leng L; Liu Z; Huang X; Long M; Zhang YE
    Genome Res; 2016 Dec; 26(12):1663-1675. PubMed ID: 27934698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Orphan" retrogenes in the human genome.
    Ciomborowska J; Rosikiewicz W; Szklarczyk D; Makałowski W; Makałowska I
    Mol Biol Evol; 2013 Feb; 30(2):384-96. PubMed ID: 23066043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots.
    Zhu Z; Tan S; Zhang Y; Zhang YE
    Sci Rep; 2016 Apr; 6():24755. PubMed ID: 27098918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome.
    Baucom RS; Estill JC; Leebens-Mack J; Bennetzen JL
    Genome Res; 2009 Feb; 19(2):243-54. PubMed ID: 19029538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pollen-specific activation of Arabidopsis retrogenes is associated with global transcriptional reprogramming.
    Abdelsamad A; Pecinka A
    Plant Cell; 2014 Aug; 26(8):3299-313. PubMed ID: 25118244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis.
    Tian Z; Yu Y; Lin F; Yu Y; Sanmiguel PJ; Wing RA; McCouch SR; Ma J; Jackson SA
    BMC Genomics; 2011 Mar; 12():142. PubMed ID: 21385395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymorphisms and evolutionary history of retrotransposon insertions in rice promoters.
    Xu Z; Rafi S; Ramakrishna W
    Genome; 2011 Aug; 54(8):629-38. PubMed ID: 21823826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome
    Zhang QJ; Gao LZ
    G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomic analysis of retrogene repertoire in two green algae Volvox carteri and Chlamydomonas reinhardtii.
    Jąkalski M; Takeshita K; Deblieck M; Koyanagi KO; Makałowska I; Watanabe H; Makałowski W
    Biol Direct; 2016 Aug; 11():35. PubMed ID: 27487948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes.
    Gao D; Chen J; Chen M; Meyers BC; Jackson S
    PLoS One; 2012; 7(2):e32010. PubMed ID: 22359654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.