BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 16829959)

  • 41. Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5.
    Senisterra G; Wu H; Allali-Hassani A; Wasney GA; Barsyte-Lovejoy D; Dombrovski L; Dong A; Nguyen KT; Smil D; Bolshan Y; Hajian T; He H; Seitova A; Chau I; Li F; Poda G; Couture JF; Brown PJ; Al-Awar R; Schapira M; Arrowsmith CH; Vedadi M
    Biochem J; 2013 Jan; 449(1):151-9. PubMed ID: 22989411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression.
    Katada S; Sassone-Corsi P
    Nat Struct Mol Biol; 2010 Dec; 17(12):1414-21. PubMed ID: 21113167
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human.
    Takahashi YH; Westfield GH; Oleskie AN; Trievel RC; Shilatifard A; Skiniotis G
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20526-31. PubMed ID: 22158900
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The MLL1 trimeric catalytic complex is a dynamic conformational ensemble stabilized by multiple weak interactions.
    Kaustov L; Lemak A; Wu H; Faini M; Fan L; Fang X; Zeng H; Duan S; Allali-Hassani A; Li F; Wei Y; Vedadi M; Aebersold R; Wang Y; Houliston S; Arrowsmith CH
    Nucleic Acids Res; 2019 Sep; 47(17):9433-9447. PubMed ID: 31400120
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural basis for activity regulation of MLL family methyltransferases.
    Li Y; Han J; Zhang Y; Cao F; Liu Z; Li S; Wu J; Hu C; Wang Y; Shuai J; Chen J; Cao L; Li D; Shi P; Tian C; Zhang J; Dou Y; Li G; Chen Y; Lei M
    Nature; 2016 Feb; 530(7591):447-52. PubMed ID: 26886794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural and biochemical insights into MLL1 core complex assembly.
    Avdic V; Zhang P; Lanouette S; Groulx A; Tremblay V; Brunzelle J; Couture JF
    Structure; 2011 Jan; 19(1):101-8. PubMed ID: 21220120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The methyltransferase NSD3 has chromatin-binding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition.
    He C; Li F; Zhang J; Wu J; Shi Y
    J Biol Chem; 2013 Feb; 288(7):4692-703. PubMed ID: 23269674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of WDR5 in silencing human fetal globin gene expression.
    Xu Z; He Y; Ju J; Rank G; Cerruti L; Ma C; Simpson RJ; Moritz RL; Jane SM; Zhao Q
    Haematologica; 2012 Nov; 97(11):1632-40. PubMed ID: 22689669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. WDR5, a complexed protein.
    Trievel RC; Shilatifard A
    Nat Struct Mol Biol; 2009 Jul; 16(7):678-80. PubMed ID: 19578375
    [No Abstract]   [Full Text] [Related]  

  • 50. BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex.
    Laribee RN; Krogan NJ; Xiao T; Shibata Y; Hughes TR; Greenblatt JF; Strahl BD
    Curr Biol; 2005 Aug; 15(16):1487-93. PubMed ID: 16040246
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF.
    Li H; Ilin S; Wang W; Duncan EM; Wysocka J; Allis CD; Patel DJ
    Nature; 2006 Jul; 442(7098):91-5. PubMed ID: 16728978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibiting MLL1-WDR5 interaction ameliorates neuropathic allodynia by attenuating histone H3 lysine 4 trimethylation-dependent spinal mGluR5 transcription.
    Lin TB; Lai CY; Hsieh MC; Ho YC; Wang HH; Yang PS; Cheng JK; Chen GD; Ng SC; Peng HY
    Pain; 2020 Sep; 161(9):1995-2009. PubMed ID: 32345914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cryo-EM structure of the human MLL1 core complex bound to the nucleosome.
    Park SH; Ayoub A; Lee YT; Xu J; Kim H; Zheng W; Zhang B; Sha L; An S; Zhang Y; Cianfrocco MA; Su M; Dou Y; Cho US
    Nat Commun; 2019 Dec; 10(1):5540. PubMed ID: 31804488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic association of MLL1, H3K4 trimethylation with chromatin and Hox gene expression during the cell cycle.
    Mishra BP; Ansari KI; Mandal SS
    FEBS J; 2009 Mar; 276(6):1629-40. PubMed ID: 19220463
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The requirements for COMPASS and Paf1 in transcriptional silencing and methylation of histone H3 in Saccharomyces cerevisiae.
    Mueller JE; Canze M; Bryk M
    Genetics; 2006 Jun; 173(2):557-67. PubMed ID: 16582434
    [TBL] [Abstract][Full Text] [Related]  

  • 56. WRAD: enabler of the SET1-family of H3K4 methyltransferases.
    Ernst P; Vakoc CR
    Brief Funct Genomics; 2012 May; 11(3):217-26. PubMed ID: 22652693
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Somatic cancer mutations in the MLL1 histone methyltransferase modulate its enzymatic activity and dependence on the WDR5/RBBP5/ASH2L complex.
    Weirich S; Kudithipudi S; Jeltsch A
    Mol Oncol; 2017 Apr; 11(4):373-387. PubMed ID: 28182322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism.
    Bryk M; Briggs SD; Strahl BD; Curcio MJ; Allis CD; Winston F
    Curr Biol; 2002 Jan; 12(2):165-70. PubMed ID: 11818070
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16
    Shimoda H; Doi S; Nakashima A; Sasaki K; Doi T; Masaki T
    Kidney Int; 2019 Nov; 96(5):1162-1175. PubMed ID: 31570196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of MLL1 Methyltransferase Activity in Two Distinct Nucleosome Binding Modes.
    Ayoub A; Park SH; Lee YT; Cho US; Dou Y
    Biochemistry; 2022 Jan; 61(1):1-9. PubMed ID: 34928138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.