These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

692 related articles for article (PubMed ID: 16830313)

  • 41. Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism.
    Leblois A; Meissner W; Bioulac B; Gross CE; Hansel D; Boraud T
    Eur J Neurosci; 2007 Sep; 26(6):1701-13. PubMed ID: 17880401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research.
    Wichmann T; Bergman H; DeLong MR
    J Neural Transm (Vienna); 2018 Mar; 125(3):419-430. PubMed ID: 28601961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of beta oscillations in the subthalamic area during action observation in Parkinson's disease.
    Marceglia S; Fiorio M; Foffani G; Mrakic-Sposta S; Tiriticco M; Locatelli M; Caputo E; Tinazzi M; Priori A
    Neuroscience; 2009 Jul; 161(4):1027-36. PubMed ID: 19364520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changing views of the pathophysiology of Parkinsonism.
    Wichmann T
    Mov Disord; 2019 Aug; 34(8):1130-1143. PubMed ID: 31216379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Local field potential beta activity in the subthalamic nucleus of patients with Parkinson's disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation.
    Ray NJ; Jenkinson N; Wang S; Holland P; Brittain JS; Joint C; Stein JF; Aziz T
    Exp Neurol; 2008 Sep; 213(1):108-13. PubMed ID: 18619592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans.
    Williams D; Tijssen M; Van Bruggen G; Bosch A; Insola A; Di Lazzaro V; Mazzone P; Oliviero A; Quartarone A; Speelman H; Brown P
    Brain; 2002 Jul; 125(Pt 7):1558-69. PubMed ID: 12077005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson's disease: pathophysiology or compensation?
    Martinu K; Monchi O
    Behav Neurosci; 2013 Apr; 127(2):222-36. PubMed ID: 23244290
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia?
    Weinberger M; Hutchison WD; Dostrovsky JO
    Exp Neurol; 2009 Sep; 219(1):58-61. PubMed ID: 19460368
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [A new history of basal ganglia and physiopathology of Parkinson's disease].
    Reinoso Suárez F
    An R Acad Nac Med (Madr); 2001; 118(4):771-88; discussion 788-92. PubMed ID: 12056254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The basal ganglia in Parkinson's disease: current concepts and unexplained observations.
    Obeso JA; Marin C; Rodriguez-Oroz C; Blesa J; Benitez-Temiño B; Mena-Segovia J; Rodríguez M; Olanow CW
    Ann Neurol; 2008 Dec; 64 Suppl 2():S30-46. PubMed ID: 19127584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials.
    Foffani G; Bianchi AM; Priori A; Baselli G
    J Neural Eng; 2004 Sep; 1(3):165-73. PubMed ID: 15876636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Basal ganglia-thalamocortical circuits: their role in control of movements.
    Alexander GE
    J Clin Neurophysiol; 1994 Jul; 11(4):420-31. PubMed ID: 7962489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. From Parkinsonian thalamic activity to restoring thalamic relay using deep brain stimulation: new insights from computational modeling.
    Meijer HG; Krupa M; Cagnan H; Lourens MA; Heida T; Martens HC; Bour LJ; van Gils SA
    J Neural Eng; 2011 Dec; 8(6):066005. PubMed ID: 21990162
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels.
    Romanelli P; Esposito V; Schaal DW; Heit G
    Brain Res Brain Res Rev; 2005 Feb; 48(1):112-28. PubMed ID: 15708631
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From symphony to cacophony: pathophysiology of the human basal ganglia in Parkinson disease.
    Gale JT; Amirnovin R; Williams ZM; Flaherty AW; Eskandar EN
    Neurosci Biobehav Rev; 2008; 32(3):378-87. PubMed ID: 17466375
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Motor disorders in basal ganglia disease.
    Marsden CD
    Hum Neurobiol; 1984; 2(4):245-50. PubMed ID: 6715209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.
    DeLong MR; Wichmann T
    JAMA Neurol; 2015 Nov; 72(11):1354-60. PubMed ID: 26409114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease.
    Chang JY; Shi LH; Luo F; Zhang WM; Woodward DJ
    Neurosci Biobehav Rev; 2008; 32(3):352-66. PubMed ID: 18035416
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of deep brain stimulation and L-Dopa on electrocortical rhythms related to movement in Parkinson's disease.
    Devos D; Defebvre L
    Prog Brain Res; 2006; 159():331-49. PubMed ID: 17071241
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network.
    Cagnan H; Mallet N; Moll CKE; Gulberti A; Holt AB; Westphal M; Gerloff C; Engel AK; Hamel W; Magill PJ; Brown P; Sharott A
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):16095-16104. PubMed ID: 31341079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.