These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 16830555)
1. A stochastic regression approach to analyzing thermodynamic uncertainty in chemical speciation modeling. Weber CL; Vanbriesen JM; Small MS Environ Sci Technol; 2006 Jun; 40(12):3872-8. PubMed ID: 16830555 [TBL] [Abstract][Full Text] [Related]
2. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants. Park ES; Symanski E; Han D; Spiegelman C Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the effect of inputs uncertainty on riverine water temperature predictions with a Markov chain Monte Carlo (MCMC) algorithm. Abdi B; Bozorg-Haddad O; Loáiciga HA Environ Monit Assess; 2020 Jan; 192(2):100. PubMed ID: 31912242 [TBL] [Abstract][Full Text] [Related]
4. Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm: Inverse modeling, sensitivity, and uncertainty analysis. Zhu Y; Chen Z; Asif Z Environ Pollut; 2021 Sep; 285():117497. PubMed ID: 34380214 [TBL] [Abstract][Full Text] [Related]
5. Lifetime PCB 153 bioaccumulation and pharmacokinetics in pilot whales: Bayesian population PBPK modeling and Markov chain Monte Carlo simulations. Weijs L; Roach AC; Yang RS; McDougall R; Lyons M; Housand C; Tibax D; Manning T; Chapman J; Edge K; Covaci A; Blust R Chemosphere; 2014 Jan; 94():91-6. PubMed ID: 24080004 [TBL] [Abstract][Full Text] [Related]
6. Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation. Stathopoulos V; Girolami MA Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1984):20110541. PubMed ID: 23277599 [TBL] [Abstract][Full Text] [Related]
7. Modeling the value for money of changing clinical practice change: a stochastic application in diabetes care. Hoomans T; Abrams KR; Ament AJ; Evers SM; Severens JL Med Care; 2009 Oct; 47(10):1053-61. PubMed ID: 19648827 [TBL] [Abstract][Full Text] [Related]
8. Incorporating parameter uncertainty into Quantitative Microbial Risk Assessment (QMRA). Donald M; Mengersen K; Toze S; Sidhu JP; Cook A J Water Health; 2011 Mar; 9(1):10-26. PubMed ID: 21301111 [TBL] [Abstract][Full Text] [Related]
9. The cost-effectiveness of basiliximab induction in "old-to-old" kidney transplant programs: Bayesian estimation, simulation, and uncertainty analysis. Emparan C; Wolters H; Laukötte M; Senninger N Transplant Proc; 2005 Jun; 37(5):2069-71. PubMed ID: 15964341 [TBL] [Abstract][Full Text] [Related]
10. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078 [TBL] [Abstract][Full Text] [Related]
11. Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model. Chaudhary A; Hantush MM Water Res; 2017 Jan; 108():301-311. PubMed ID: 27836170 [TBL] [Abstract][Full Text] [Related]
13. Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid-dynamics model of the pulmonary circulation. Paun LM; Husmeier D Int J Numer Method Biomed Eng; 2021 Feb; 37(2):e3421. PubMed ID: 33249755 [TBL] [Abstract][Full Text] [Related]
14. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo. Schmidt PJ; Pintar KD; Fazil AM; Topp E Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599 [TBL] [Abstract][Full Text] [Related]
15. Applying diffusion-based Markov chain Monte Carlo. Herbei R; Paul R; Berliner LM PLoS One; 2017; 12(3):e0173453. PubMed ID: 28301529 [TBL] [Abstract][Full Text] [Related]
16. Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model. Jensen AC; Ditlevsen S; Kessler M; Papaspiliopoulos O Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041114. PubMed ID: 23214536 [TBL] [Abstract][Full Text] [Related]
17. Exploring heterogeneity in tumour data using Markov chain Monte Carlo. de Gunst MC; Dewanji A; Luebeck EG Stat Med; 2003 May; 22(10):1691-707. PubMed ID: 12720305 [TBL] [Abstract][Full Text] [Related]
18. Performance comparison of first-order conditional estimation with interaction and Bayesian estimation methods for estimating the population parameters and its distribution from data sets with a low number of subjects. Pradhan S; Song B; Lee J; Chae JW; Kim KI; Back HM; Han N; Kwon KI; Yun HY BMC Med Res Methodol; 2017 Dec; 17(1):154. PubMed ID: 29191177 [TBL] [Abstract][Full Text] [Related]
19. Prediction uncertainty assessment of chromatography models using Bayesian inference. Briskot T; Stückler F; Wittkopp F; Williams C; Yang J; Konrad S; Doninger K; Griesbach J; Bennecke M; Hepbildikler S; Hubbuch J J Chromatogr A; 2019 Feb; 1587():101-110. PubMed ID: 30579636 [TBL] [Abstract][Full Text] [Related]
20. Using Bayesian inference to estimate plausible muscle forces in musculoskeletal models. Johnson RT; Lakeland D; Finley JM J Neuroeng Rehabil; 2022 Mar; 19(1):34. PubMed ID: 35321736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]