These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 168306)

  • 1. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum.
    Van Gent-Ruijters ML; DeVries W; Southamer AH
    J Gen Microbiol; 1975 May; 88(1):36-48. PubMed ID: 168306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate metabolism in Propionibacterium pentosaceum growing with nitrate or oxygen as hydrogen acceptor.
    Gent-Ruijters ML; Meijere FA; Vries W; Stouthamer AH
    Antonie Van Leeuwenhoek; 1976; 42(3):217-28. PubMed ID: 1086638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP formation associated with fumarate and nitrate reduction in growing cultures of Veillonella alcalescens.
    de Vries W; Rietveld-Struijk RM; Stouthamer AH
    Antonie Van Leeuwenhoek; 1977; 43(2):153-67. PubMed ID: 202192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria.
    de Vries W; van Wyck-Kapteyn WM; Stouthamer AH
    J Gen Microbiol; 1973 May; 76(1):31-41. PubMed ID: 4353042
    [No Abstract]   [Full Text] [Related]  

  • 5. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and oxide-limited conditions.
    Koike I; Hattori A
    J Gen Microbiol; 1975 May; 88(1):11-9. PubMed ID: 1151328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of oxygen on growth, cytochrome synthesis and fermentation pattern in propionic acid bacteria.
    de Vries W; Wijck-Kapteijn WM; Stouthamer AH
    J Gen Microbiol; 1972 Aug; 71(3):515-24. PubMed ID: 4647470
    [No Abstract]   [Full Text] [Related]  

  • 7. The physiological function of nitrate reduction in Clostridium perfringens.
    Hasan SM; Hall JB
    J Gen Microbiol; 1975 Mar; 87(1):120-8. PubMed ID: 166143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electron transport system of the anaerobic Propionibacterium shermanii: cytochrome and inhibitor studies.
    Schwartz AC; Sporkenbach J
    Arch Microbiol; 1975 Mar; 102(3):261-73. PubMed ID: 168827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transport chain from glycerol 3-phosphate to nitrate in Escherichia coli.
    Miki K; Lin EC
    J Bacteriol; 1975 Dec; 124(3):1288-94. PubMed ID: 127786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitrate reduction on metabolic products and growth of Propionibacterium acidi-propionici.
    Kaneko M; Ishimoto M
    Z Allg Mikrobiol; 1977; 17(3):211-20. PubMed ID: 878501
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of oxygen on Propionibacterium shermanii grown in continuous culture.
    Pritchard GG; Wimpenny JW; Morris HA; Lewis MW; Hughes DE
    J Gen Microbiol; 1977 Oct; 102(2):223-33. PubMed ID: 925678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bioenergetics of denitrification.
    Stouthamer AH; Boogerd FC; van Verseveld HW
    Antonie Van Leeuwenhoek; 1982; 48(6):545-53. PubMed ID: 6762847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for cytochrome involvement in fumarate reduction and adenosine 5'-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin.
    Macy J; Probst I; Gottschalk G
    J Bacteriol; 1975 Aug; 123(2):436-42. PubMed ID: 1150622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic growth of a "strict aerobe" (Bacillus subtilis).
    Nakano MM; Zuber P
    Annu Rev Microbiol; 1998; 52():165-90. PubMed ID: 9891797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose fermentation by Propionibacterium microaerophilum: effect of pH on metabolism and bioenergetic.
    Koussémon M; Combet-Blanc Y; Ollivier B
    Curr Microbiol; 2003 Feb; 46(2):141-5. PubMed ID: 12520370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. the involvement of Nitric Oxide in the inhibition of the phosphoroclastic system in Clostridium sporogenes by sodium nitrite.
    Woods LF; Wood JM; Gibbs PA
    J Gen Microbiol; 1981 Aug; 125(2):399-406. PubMed ID: 6798167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation.
    Bock AK; Schönheit P
    J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cytochrome c containing nitrate reductase plays a role in electron transport for denitrification in Thermus thermophilus without involvement of the bc respiratory complex.
    Cava F; Zafra O; Berenguer J
    Mol Microbiol; 2008 Oct; 70(2):507-18. PubMed ID: 18761683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant.
    Wallace BJ; Young IG
    Biochim Biophys Acta; 1977 Jul; 461(1):84-100. PubMed ID: 195602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functioning of cytochrome b in the electron transport to furmarate in Propionibacterium freudenreichii and Propionibacterium pentosaceum.
    De Vries W; Aleem MI; Hemrika-Wagner A; Stouthamer AH
    Arch Microbiol; 1977 Apr; 112(3):271-6. PubMed ID: 871228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.