BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16831017)

  • 1. Silver and gold glyconanoparticles for colorimetric bioassays.
    Schofield CL; Haines AH; Field RA; Russell DA
    Langmuir; 2006 Jul; 22(15):6707-11. PubMed ID: 16831017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles.
    Schofield CL; Mukhopadhyay B; Hardy SM; McDonnell MB; Field RA; Russell DA
    Analyst; 2008 May; 133(5):626-34. PubMed ID: 18427684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioglucose-stabilized gold nanoparticles as a novel platform for colorimetric bioassay based on nanoparticle aggregation.
    Watanabe S; Yoshida K; Shinkawa K; Kumagawa D; Seguchi H
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):570-7. PubMed ID: 20801619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement.
    Min IH; Choi L; Ahn KS; Kim BK; Lee BY; Kim KS; Choi HN; Lee WY
    Biosens Bioelectron; 2010 Dec; 26(4):1326-31. PubMed ID: 20685103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyconanoparticles for the colorimetric detection of cholera toxin.
    Schofield CL; Field RA; Russell DA
    Anal Chem; 2007 Feb; 79(4):1356-61. PubMed ID: 17297934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ scanometric assay of cell surface carbohydrate by glyconanoparticle-aggregation-regulated silver enhancement.
    Ding L; Qian R; Xue Y; Cheng W; Ju H
    Anal Chem; 2010 Jul; 82(13):5804-9. PubMed ID: 20527818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic light scattering as an efficient tool to study glyconanoparticle-lectin interactions.
    Wang X; Ramström O; Yan M
    Analyst; 2011 Oct; 136(20):4174-8. PubMed ID: 21858301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microgravimetric lectin biosensor based on signal amplification using carbohydrate-stabilized gold nanoparticles.
    Lyu YK; Lim KR; Lee BY; Kim KS; Lee WY
    Chem Commun (Camb); 2008 Oct; (39):4771-3. PubMed ID: 18830488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic nanoparticles bioassay for Enterobacter cloacae P99 beta-lactamase activity and inhibitor screening.
    Liu R; Teo W; Tan S; Feng H; Padmanabhan P; Xing B
    Analyst; 2010 May; 135(5):1031-6. PubMed ID: 20419253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 12-Mercaptododecyl beta-maltoside-modified gold nanoparticles: specific ligands for concanavalin A having long flexible hydrocarbon chains.
    Sato Y; Murakami T; Yoshioka K; Niwa O
    Anal Bioanal Chem; 2008 Aug; 391(7):2527-32. PubMed ID: 18418585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions.
    Reynolds AJ; Haines AH; Russell DA
    Langmuir; 2006 Jan; 22(3):1156-63. PubMed ID: 16430279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Nanoparticles Conjugated with Glycopeptides for Lectin Detection and Imaging on Cell Surface.
    Tsutsumi H; Shirai T; Ohkusa H; Mihara H
    Protein Pept Lett; 2018; 25(1):84-89. PubMed ID: 29256341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of biotinylated α-D-mannoside or N-acetyl β-D-glucosaminoside decorated gold nanoparticles: study of their biomolecular recognition with Con A and WGA Lectins.
    Jiang X; Housni A; Gody G; Boullanger P; Charreyre MT; Delair T; Narain R
    Bioconjug Chem; 2010 Mar; 21(3):521-30. PubMed ID: 20128624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles conjugated with monosaccharide-modified peptide for lectin detection.
    Tsutsumi H; Ohkusa H; Park H; Takahashi T; Yuasa H; Mihara H
    Bioorg Med Chem Lett; 2012 Nov; 22(22):6825-7. PubMed ID: 23046965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoassisted synthesis of luminescent mannose-Au nanodots for the detection of thyroglobulin in serum.
    Huang CC; Hung YL; Shiang YC; Lin TY; Lin YS; Chen CT; Chang HT
    Chem Asian J; 2010 Feb; 5(2):334-41. PubMed ID: 20063339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A.
    Loaiza OA; Lamas-Ardisana PJ; Jubete E; Ochoteco E; Loinaz I; Cabañero G; García I; Penadés S
    Anal Chem; 2011 Apr; 83(8):2987-95. PubMed ID: 21417434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A convenient method for synthesis of glyconanoparticles for colorimetric measuring carbohydrate-protein interactions.
    Chuang YJ; Zhou X; Pan Z; Turchi C
    Biochem Biophys Res Commun; 2009 Nov; 389(1):22-7. PubMed ID: 19698698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new rapid colorimetric detection method of Al³⁺ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles.
    Yang N; Gao Y; Zhang Y; Shen Z; Wu A
    Talanta; 2014 May; 122():272-7. PubMed ID: 24720995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles.
    Liu Y; Liu Y; Li Z; Liu J; Xu L; Liu X
    Analyst; 2015 Aug; 140(15):5335-43. PubMed ID: 26079979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.