BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

813 related articles for article (PubMed ID: 16831457)

  • 1. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of arsenic-contaminated soils and washing effluents.
    Jang M; Hwang JS; Choi SI; Park JK
    Chemosphere; 2005 Jul; 60(3):344-54. PubMed ID: 15924953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil.
    Isoyama M; Wada S
    J Hazard Mater; 2007 May; 143(3):636-42. PubMed ID: 17267106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM; Kim M; Hyun S; Lee SH
    Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils.
    Anawar HM; Garcia-Sanchez A; Santa Regina I
    Chemosphere; 2008 Feb; 70(8):1459-67. PubMed ID: 17936872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions.
    Yang JS; Lee JY; Baek K; Kwon TS; Choi J
    J Hazard Mater; 2009 Nov; 171(1-3):443-51. PubMed ID: 19577840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative.
    Chatain V; Hanna K; de Brauer C; Bayard R; Germain P
    Chemosphere; 2004 Oct; 57(3):197-206. PubMed ID: 15312736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction.
    Ko I; Chang YY; Lee CH; Kim KW
    J Hazard Mater; 2005 Dec; 127(1-3):1-13. PubMed ID: 16122872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities.
    Moutsatsou A; Gregou M; Matsas D; Protonotarios V
    Chemosphere; 2006 Jun; 63(10):1632-40. PubMed ID: 16325230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.
    Wang Y; Ma F; Zhang Q; Peng C; Wu B; Li F; Gu Q
    Chemosphere; 2017 Apr; 173():368-372. PubMed ID: 28129613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of electrokinetic remediation of arsenic-contaminated soils.
    Kim SO; Kim WS; Kim KW
    Environ Geochem Health; 2005 Sep; 27(5-6):443-53. PubMed ID: 16237600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil washing of fluorine contaminated soil using various washing solutions.
    Moon DH; Jo R; Koutsospyros A; Cheong KH; Park JH
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):334-9. PubMed ID: 25552323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility.
    Bauer M; Fulda B; Blodau C
    Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification.
    Makino T; Takano H; Kamiya T; Itou T; Sekiya N; Inahara M; Sakurai Y
    Chemosphere; 2008 Jan; 70(6):1035-43. PubMed ID: 17919681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions.
    Bayard R; Chatain V; Gachet C; Troadec A; Gourdon R
    Water Res; 2006 Mar; 40(6):1240-1248. PubMed ID: 16529789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.