These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 1683241)
1. Relationship between D1 dopamine receptors, adenylate cyclase, and the electrophysiological responses of rat nucleus accumbens neurons. Johansen PA; Hu XT; White FJ J Neural Transm Gen Sect; 1991; 86(2):97-113. PubMed ID: 1683241 [TBL] [Abstract][Full Text] [Related]
2. D1 dopamine receptor stimulation enables the postsynaptic, but not autoreceptor, effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Wachtel SR; Hu XT; Galloway MP; White FJ Synapse; 1989; 4(4):327-46. PubMed ID: 2532422 [TBL] [Abstract][Full Text] [Related]
3. Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation. Hu XT; Wachtel SR; Galloway MP; White FJ J Neurosci; 1990 Jul; 10(7):2318-29. PubMed ID: 1973947 [TBL] [Abstract][Full Text] [Related]
4. Loss of D1/D2 dopamine receptor synergisms following repeated administration of D1 or D2 receptor selective antagonists: electrophysiological and behavioral studies. Hu XT; White FJ Synapse; 1994 May; 17(1):43-61. PubMed ID: 7913772 [TBL] [Abstract][Full Text] [Related]
5. Involvement of adenylate cyclase inhibition in dopamine autoreceptor regulation of tyrosine hydroxylase in rat nucleus accumbens. Onali P; Olianas MC Neurosci Lett; 1989 Jul; 102(1):91-6. PubMed ID: 2571111 [TBL] [Abstract][Full Text] [Related]
6. Comparison of effects of D-1 and D-2 dopamine receptor agonists on neurons in the rat caudate putamen: an electrophysiological study. Hu XT; Wang RY J Neurosci; 1988 Nov; 8(11):4340-8. PubMed ID: 2972814 [TBL] [Abstract][Full Text] [Related]
7. B-HT 920 stimulates postsynaptic D2 dopamine receptors in the normal rat: electrophysiological and behavioral evidence. Johansen PA; Clarkl D; White FJ Life Sci; 1988; 43(6):515-24. PubMed ID: 2900459 [TBL] [Abstract][Full Text] [Related]
8. Contribution of the amygdala and nucleus accumbens to ventral pallidal responses to dopamine agonists. Napier TC Synapse; 1992 Feb; 10(2):110-9. PubMed ID: 1350111 [TBL] [Abstract][Full Text] [Related]
9. Role of D1 and D2 dopamine receptors in mediating locomotor activity elicited from the nucleus accumbens of rats. Dreher JK; Jackson DM Brain Res; 1989 May; 487(2):267-77. PubMed ID: 2525062 [TBL] [Abstract][Full Text] [Related]
10. Relative dopamine D1 and D2 receptor affinity and efficacy determine whether dopamine agonists induce hyperactivity or oral stereotypy in rats. Arnt J; Bøgesø KP; Hyttel J; Meier E Pharmacol Toxicol; 1988 Mar; 62(3):121-30. PubMed ID: 3259694 [TBL] [Abstract][Full Text] [Related]
11. Opioid receptors and inhibition of dopamine-sensitive adenylate cyclase in slices of rat brain regions receiving a dense dopaminergic input. Heijna MH; Bakker JM; Hogenboom F; Mulder AH; Schoffelmeer AN Eur J Pharmacol; 1992 Dec; 229(2-3):197-202. PubMed ID: 1337044 [TBL] [Abstract][Full Text] [Related]
12. Evidence of increased dopamine receptor signaling in food-restricted rats. Carr KD; Tsimberg Y; Berman Y; Yamamoto N Neuroscience; 2003; 119(4):1157-67. PubMed ID: 12831870 [TBL] [Abstract][Full Text] [Related]
13. Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study. Sesack SR; Bunney BS J Pharmacol Exp Ther; 1989 Mar; 248(3):1323-33. PubMed ID: 2564893 [TBL] [Abstract][Full Text] [Related]
14. Modification of the function of D1 and D2 dopamine receptors in striatum and nucleus accumbens of rats chronically treated with haloperidol. Memo M; Pizzi M; Missale C; Carruba MO; Spano PF Neuropharmacology; 1987 May; 26(5):477-80. PubMed ID: 2955241 [TBL] [Abstract][Full Text] [Related]
15. Effects of dopamine agonists on excitatory inputs to nucleus accumbens neurons from the amygdala: modulatory actions of cholecystokinin. Liang RZ; Wu M; Yim CC; Mogenson GJ Brain Res; 1991 Jul; 554(1-2):85-94. PubMed ID: 1681991 [TBL] [Abstract][Full Text] [Related]
16. Partial and full dopamine D1 receptor agonists in mice and rats: relation between behavioural effects and stimulation of adenylate cyclase activity in vitro. Arnt J; Hyttel J; Sánchez C Eur J Pharmacol; 1992 Mar; 213(2):259-67. PubMed ID: 1355737 [TBL] [Abstract][Full Text] [Related]
17. Repeated stimulation of D1 dopamine receptors causes time-dependent alterations in the sensitivity of both D1 and D2 dopamine receptors within the rat striatum. Hu XT; Brooderson RJ; White FJ Neuroscience; 1992 Sep; 50(1):137-47. PubMed ID: 1357592 [TBL] [Abstract][Full Text] [Related]
18. Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Yang CR; Mogenson GJ Brain Res; 1989 Jun; 489(2):237-46. PubMed ID: 2568154 [TBL] [Abstract][Full Text] [Related]
19. Effects of acute dopamine depletion on responsiveness to D1 and D2 receptor agonists in infant and weanling rat pups. Moody CA; Spear LP Psychopharmacology (Berl); 1992; 107(1):39-49. PubMed ID: 1350350 [TBL] [Abstract][Full Text] [Related]
20. Effects of (+)-4-propyl-9-hydroxynaphthoxazine on midbrain dopamine neurons: an electrophysiological study. Kelland MD; Freeman AS; LeWitt PA; Chiodo LA J Pharmacol Exp Ther; 1990 Oct; 255(1):276-84. PubMed ID: 1976800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]