BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16832467)

  • 1. Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography.
    Ugryumova N; Gangnus SV; Matcher SJ
    Opt Lett; 2006 Aug; 31(15):2305-7. PubMed ID: 16832467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical coherence tomography.
    Ugryumova N; Jacobs J; Bonesi M; Matcher SJ
    Osteoarthritis Cartilage; 2009 Jan; 17(1):33-42. PubMed ID: 18621555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography.
    Liu CJ; Black AJ; Wang H; Akkin T
    J Biomed Opt; 2016 Jul; 21(7):70501. PubMed ID: 27387702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography.
    Liu B; Harman M; Giattina S; Stamper DL; Demakis C; Chilek M; Raby S; Brezinski ME
    Appl Opt; 2006 Jun; 45(18):4464-79. PubMed ID: 16778957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography.
    Kemp NJ; Park J; Zaatari HN; Rylander HG; Milner TE
    J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):552-60. PubMed ID: 15770994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography.
    Park BH; Pierce MC; Cense B; de Boer JF
    Opt Lett; 2005 Oct; 30(19):2587-9. PubMed ID: 16208908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography.
    Guo S; Zhang J; Wang L; Nelson JS; Chen Z
    Opt Lett; 2004 Sep; 29(17):2025-7. PubMed ID: 15455768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography.
    Lu Z; Kasaragod DK; Matcher SJ
    Phys Med Biol; 2011 Feb; 56(4):1105-22. PubMed ID: 21263175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy.
    van Turnhout MC; Kranenbarg S; van Leeuwen JL
    J Biomed Opt; 2009; 14(5):054018. PubMed ID: 19895120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina.
    Pircher M; Götzinger E; Baumann B; Hitzenberger CK
    J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography.
    Fan C; Yao G
    J Biomed Opt; 2012 Nov; 17(11):110501. PubMed ID: 23047300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    J Biomed Opt; 2006; 11(6):064001. PubMed ID: 17212524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography.
    Fan C; Yao G
    Opt Lett; 2012 May; 37(9):1415-7. PubMed ID: 22555689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superresolution of three-dimensional optical imaging by use of evanescent waves.
    Chaumet PC; Belkebir K; Sentenac A
    Opt Lett; 2004 Dec; 29(23):2740-2. PubMed ID: 15605490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the enhancement of three-dimensional diffraction tomography by using multiple illumination planes.
    Vouldis AT; Kechribaris CN; Maniatis TA; Nikita KS; Uzunoglu NK
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jul; 22(7):1251-62. PubMed ID: 16053146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography.
    Yang Y; Rupani A; Bagnaninchi P; Wimpenny I; Weightman A
    J Biomed Opt; 2012 Aug; 17(8):081417. PubMed ID: 23224178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization effect on the depth resolution of optical coherence tomography.
    Jiao S; Ruggeri M
    J Biomed Opt; 2008; 13(6):060503. PubMed ID: 19123644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correcting optical-axis calculation in polarization-sensitive optical coherence tomography.
    Fan C; Yao G
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2556-9. PubMed ID: 20595087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transversal phase resolved polarization sensitive optical coherence tomography.
    Pircher M; Goetzinger E; Leitgeb R; Hitzenberger CK
    Phys Med Biol; 2004 Apr; 49(7):1257-63. PubMed ID: 15128203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography.
    Tomlins PH; Wang RK
    J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1897-907. PubMed ID: 16835647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.