BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16832484)

  • 1. Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy.
    Bigourd D; Cuisset A; Hindle F; Matton S; Fertein E; Bocquet R; Mouret G
    Opt Lett; 2006 Aug; 31(15):2356-8. PubMed ID: 16832484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonyl compounds in cigarette smoke.
    Baker RR
    Environ Toxicol; 2006 Dec; 21(6):621-2; author reply 622. PubMed ID: 17091507
    [No Abstract]   [Full Text] [Related]  

  • 3. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indoor air quality (IAQ) evaluation of a Novel Tobacco Vapor (NTV) product.
    Ichitsubo H; Kotaki M
    Regul Toxicol Pharmacol; 2018 Feb; 92():278-294. PubMed ID: 29277437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The analysis of mainstream smoke emissions of Canadian 'super slim' cigarettes.
    Siu M; Mladjenovic N; Soo E
    Tob Control; 2013 Nov; 22(6):e10. PubMed ID: 22821751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of toxic carbonyl compounds in cigarette smoke.
    Fujioka K; Shibamoto T
    Environ Toxicol; 2006 Feb; 21(1):47-54. PubMed ID: 16463255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR analysis of gaseous compounds in the mainstream smoke of regular and light cigarettes.
    Bacsik Z; McGregor J; Mink J
    Food Chem Toxicol; 2007 Feb; 45(2):266-71. PubMed ID: 17046136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive monitoring method for 3-ethenylpyridine: a marker for environmental tobacco smoke.
    Vainiotalo S; Vaaranrinta R; Tornaeus J; Aremo N; Hase T; Peltonen K
    Environ Sci Technol; 2001 May; 35(9):1818-22. PubMed ID: 11355198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of tobacco blend composition on carbon monoxide formation in mainstream cigarette smoke.
    Djulančić N; Radojičić V; Srbinovska M
    Arh Hig Rada Toksikol; 2013; 64(1):107-13. PubMed ID: 23612614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives.
    Baker RR; Pereira da Silva JR; Smith G
    Food Chem Toxicol; 2004; 42 Suppl():S3-37. PubMed ID: 15072836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study by electron paramagnetic resonance of free radical species in the mainstream and sidestream smoke of cigarettes with conventional acetate filters and 'bio-filters'.
    Valavanidis A; Haralambous E
    Redox Rep; 2001; 6(3):161-71. PubMed ID: 11523591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The in situ detection of smoking in public area by laser-induced breakdown spectroscopy.
    Zhang Q; Liu Y; Yin W; Yan Y; Li L; Xing G
    Chemosphere; 2020 Mar; 242():125184. PubMed ID: 31677510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron pentacarbonyl detection limits in the cigarette smoke matrix using FT-IR spectroscopy.
    Parrish ME; Plunkett SE; Harward CN
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):226-32. PubMed ID: 16257718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human health risk associated with exposure to toxic elements in mainstream and sidestream cigarette smoke.
    Behera SN; Xian H; Balasubramanian R
    Sci Total Environ; 2014 Feb; 472():947-56. PubMed ID: 24342102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and sensitive method for simultaneous determination of six carcinogenic aromatic amines in mainstream cigarette smoke by liquid chromatography/electrospray ionization tandem mass spectrometry.
    Saha S; Mistri R; Ray BC
    J Chromatogr A; 2009 Apr; 1216(15):3059-63. PubMed ID: 19233372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mainstream smoke chemistry analysis of samples from the 2009 US cigarette market.
    Bodnar JA; Morgan WT; Murphy PA; Ogden MW
    Regul Toxicol Pharmacol; 2012 Oct; 64(1):35-42. PubMed ID: 22683394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a mid-infrared hollow waveguide gas cell for the analysis of carbon monoxide and nitric oxide.
    Thompson BT; Inberg A; Croitoru N; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):266-71. PubMed ID: 16608569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indoor air pollution with smoke constituents--an experimental investigation.
    Hugod C
    Prev Med; 1984 Nov; 13(6):582-8. PubMed ID: 6100329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct determination of hydrogen cyanide in cigarette mainstream smoke by ion chromatography with pulsed amperometric detection.
    Zhang ZW; Xu YB; Wang CH; Chen KB; Tong HW; Liu SM
    J Chromatogr A; 2011 Feb; 1218(7):1016-9. PubMed ID: 21238972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas chromatography-mass spectrometry of carbonyl compounds in cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine.
    Dong JZ; Moldoveanu SC
    J Chromatogr A; 2004 Feb; 1027(1-2):25-35. PubMed ID: 14971480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.