These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
525 related articles for article (PubMed ID: 16832684)
1. Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. Jürgens R; Becker W Exp Brain Res; 2006 Oct; 174(3):528-43. PubMed ID: 16832684 [TBL] [Abstract][Full Text] [Related]
2. Vestibular, optokinetic, and cognitive contribution to the guidance of passive self-rotation toward instructed targets. Jürgens R; Nasios G; Becker W Exp Brain Res; 2003 Jul; 151(1):90-107. PubMed ID: 12740727 [TBL] [Abstract][Full Text] [Related]
3. Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Becker W; Nasios G; Raab S; Jürgens R Exp Brain Res; 2002 Jun; 144(4):458-74. PubMed ID: 12037631 [TBL] [Abstract][Full Text] [Related]
4. Estimation of self-turning in the dark: comparison between active and passive rotation. Jürgens R; Boss T; Becker W Exp Brain Res; 1999 Oct; 128(4):491-504. PubMed ID: 10541743 [TBL] [Abstract][Full Text] [Related]
5. Visual contributions to human self-motion perception during horizontal body rotation. Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255 [TBL] [Abstract][Full Text] [Related]
6. Vestibular perception of self-rotation in different postures: a comparison between sitting and standing subjects. Becker W; Jürgens R; Boss T Exp Brain Res; 2000 Apr; 131(4):468-76. PubMed ID: 10803415 [TBL] [Abstract][Full Text] [Related]
7. Maintaining spatial body alignment on a rotating platform by means of active counter-circling: role of vestibular and podokinesthetic afferents. Diekmann V; Jürgens R; Becker W Exp Brain Res; 2004 Oct; 158(4):504-18. PubMed ID: 15300346 [TBL] [Abstract][Full Text] [Related]
8. Human postural responses to motion of real and virtual visual environments under different support base conditions. Mergner T; Schweigart G; Maurer C; Blümle A Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969 [TBL] [Abstract][Full Text] [Related]
9. Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical. Ward BK; Bockisch CJ; Caramia N; Bertolini G; Tarnutzer AA J Neurophysiol; 2017 May; 117(5):1948-1958. PubMed ID: 28148642 [TBL] [Abstract][Full Text] [Related]
10. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects. Allum JH; Oude Nijhuis LB; Carpenter MG Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108 [TBL] [Abstract][Full Text] [Related]
11. Human spatial orientation in non-stationary environments: relation between self-turning perception and detection of surround motion. Jürgens R; Becker W Exp Brain Res; 2011 Dec; 215(3-4):327-44. PubMed ID: 22006272 [TBL] [Abstract][Full Text] [Related]
12. Vestibular and proprioceptive estimation of imposed rotation and spatial updating in standing subjects. Zanelli G; Cappa P; Petrarca M; Berthoz A Gait Posture; 2011 Apr; 33(4):582-7. PubMed ID: 21397506 [TBL] [Abstract][Full Text] [Related]
13. Recovery times of stance and gait balance control after an acute unilateral peripheral vestibular deficit. Allum JH; Honegger F J Vestib Res; 2016; 25(5-6):219-31. PubMed ID: 26890423 [TBL] [Abstract][Full Text] [Related]
14. Interaction of vestibular and proprioceptive inputs. Mergner T; Hlavacka F; Schweigart G J Vestib Res; 1993; 3(1):41-57. PubMed ID: 8275243 [TBL] [Abstract][Full Text] [Related]
15. Contributions of optostatic and optokinetic cues to the perception of vertical. Niehof N; Perdreau F; Koppen M; Medendorp WP J Neurophysiol; 2019 Aug; 122(2):480-489. PubMed ID: 31166820 [TBL] [Abstract][Full Text] [Related]
16. Asymmetry of ocular motor and perceptual vestibular processing in humans with unilateral vestibular deafferentation. Crane BT; Tian J; Demer JL J Vestib Res; 2000; 10(6):259-69. PubMed ID: 11455107 [TBL] [Abstract][Full Text] [Related]
17. Optokinetic circular vection: a test of visual-vestibular conflict models of vection nascensy. Jürgens R; Kliegl K; Kassubek J; Becker W Exp Brain Res; 2016 Jan; 234(1):67-81. PubMed ID: 26358128 [TBL] [Abstract][Full Text] [Related]
18. The influence of visual and somatosensory input on the vestibulo-oculomotor reflex of pigmented rats. Niklasson M; Tham R; Larsby B; Eriksson B J Vestib Res; 1990-1991; 1(3):251-62. PubMed ID: 1670158 [TBL] [Abstract][Full Text] [Related]
19. A shared neural integrator for human posture control. Haggerty SE; Wu AR; Sienko KH; Kuo AD J Neurophysiol; 2017 Aug; 118(2):894-903. PubMed ID: 28446583 [TBL] [Abstract][Full Text] [Related]
20. Storing upright turns: how visual and vestibular cues interact during the encoding and recalling process. Vidal M; Bülthoff HH Exp Brain Res; 2010 Jan; 200(1):37-49. PubMed ID: 19705112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]