These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16832798)

  • 21. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Horseradish and soybean peroxidases: comparable tools for alternative niches?
    Ryan BJ; Carolan N; O'Fágáin C
    Trends Biotechnol; 2006 Aug; 24(8):355-63. PubMed ID: 16815578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregation behavior of giant amphiphiles prepared by cofactor reconstitution.
    Boerakker MJ; Botterhuis NE; Bomans PH; Frederik PM; Meijer EM; Nolte RJ; Sommerdijk NA
    Chemistry; 2006 Aug; 12(23):6071-80. PubMed ID: 16688714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Stabilization of polyacrylamide gel immobilized horseradish peroxidase by its covalent coupling to albumin].
    Ugarova NN; Kershengol'ts BM; Artomonov ID; Berezin IV
    Biokhimiia; 1976 Oct; 41(10):1829-36. PubMed ID: 1024581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prosthetic heme modification during halide ion oxidation. Demonstration of chloride oxidation by horseradish peroxidase.
    Huang L; Wojciechowski G; Ortiz de Montellano PR
    J Am Chem Soc; 2005 Apr; 127(15):5345-53. PubMed ID: 15826172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization.
    Bódalo A; Bastida J; Máximo MF; Montiel MC; Gómez M; Murcia MD
    Bioprocess Biosyst Eng; 2008 Oct; 31(6):587-93. PubMed ID: 18270748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of heme-reconstitution of apoenzymes by means of surface plasmon resonance.
    Fruk L; Kuhlmann J; Niemeyer CM
    Chem Commun (Camb); 2009 Jan; (2):230-2. PubMed ID: 19099078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covalent immobilization of a flavoprotein monooxygenase via its flavin cofactor.
    Krzek M; van Beek HL; Permentier HP; Bischoff R; Fraaije MW
    Enzyme Microb Technol; 2016 Jan; 82():138-143. PubMed ID: 26672460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of horse radish peroxidase immobilization on the kinetics of enzymatic oxidation of guaiacol in frozen solutions].
    Sergeev GB; Gudima AI; Sergeev BM; Taran AA; Batiuk VA
    Biokhimiia; 1981 Jun; 46(6):986-9. PubMed ID: 7260202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-directed assembly of artificial multienzyme complexes.
    Müller J; Niemeyer CM
    Biochem Biophys Res Commun; 2008 Dec; 377(1):62-7. PubMed ID: 18823945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes.
    Asuri P; Bale SS; Pangule RC; Shah DA; Kane RS; Dordick JS
    Langmuir; 2007 Nov; 23(24):12318-21. PubMed ID: 17944500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Haem propionates control oxidative and reductive activities of horseradish peroxidase by maintaining the correct orientation of the haem.
    Adak S; Banerjee RK
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):51-6. PubMed ID: 9693101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Normal mode analysis of the horseradish peroxidase collective motions: correlation with spectroscopically observed heme distortions.
    Laberge M; Kovesi I; Yonetani T; Fidy J
    Biopolymers; 2006 Jul; 82(4):425-9. PubMed ID: 16453307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemiluminescence assay for oxidatively modified myoglobin.
    Vuletich JL; Osawa Y
    Anal Biochem; 1998 Dec; 265(2):375-80. PubMed ID: 9882417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Horse heart myoglobin catalyzes the H2O2-dependent oxidative dehalogenation of chlorophenols to DNA-binding radicals and quinones.
    Osborne RL; Coggins MK; Walla M; Dawson JH
    Biochemistry; 2007 Aug; 46(34):9823-9. PubMed ID: 17676875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic studies of interactions involving horseradish peroxidase and Tb3+.
    Guo S; Zhou Q; Lu T; Ding X; Huang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):818-23. PubMed ID: 18024195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Addressable microfluidic polymer chip for DNA-directed immobilization of oligonucleotide-tagged compounds.
    Schröder H; Hoffmann L; Müller J; Alhorn P; Fleger M; Neyer A; Niemeyer CM
    Small; 2009 Jul; 5(13):1547-52. PubMed ID: 19326353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of heme-protein covalent bonds in mammalian peroxidases. Protection of the heme by a single engineered heme-protein link in horseradish peroxidase.
    Huang L; Wojciechowski G; Ortiz de Montellano PR
    J Biol Chem; 2006 Jul; 281(28):18983-8. PubMed ID: 16651262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen diffusion near the heme binding site of horseradish peroxidase.
    Vargas V; Brunet JE; Jameson DM
    Biochem Biophys Res Commun; 1991 Jul; 178(1):104-9. PubMed ID: 2069551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.