BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16833148)

  • 1. A comparison of the effects of single and repeated exposure to an organophosphate insecticide on acetylcholinesterase activity in mammals.
    Long SM; Dawson A; Shore RF
    Environ Toxicol Chem; 2006 Jul; 25(7):1857-63. PubMed ID: 16833148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response and recovery of acetylcholinesterase activity in freshwater shrimp, Paratya australiensis (Decapoda: Atyidae) exposed to selected anti-cholinesterase insecticides.
    Kumar A; Doan H; Barnes M; Chapman JC; Kookana RS
    Ecotoxicol Environ Saf; 2010 Oct; 73(7):1503-10. PubMed ID: 20701973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-additive inhibition of chinook salmon acetylcholinesterase activity by mixtures of organophosphate and carbamate insecticides.
    Scholz NL; Truelove NK; Labenia JS; Baldwin DH; Collier TK
    Environ Toxicol Chem; 2006 May; 25(5):1200-7. PubMed ID: 16704049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sublethal neurotoxicity of organophosphate insecticides to juvenile coho salmon.
    Laetz CA; Baldwin DH; Scholz NL
    Aquat Toxicol; 2020 Apr; 221():105424. PubMed ID: 32058876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologically based pharmacokinetic and pharmacodynamic model for the inhibition of acetylcholinesterase by diisopropylfluorophosphate.
    Gearhart JM; Jepson GW; Clewell HJ; Andersen ME; Conolly RB
    Toxicol Appl Pharmacol; 1990 Nov; 106(2):295-310. PubMed ID: 2256118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinesterase Research Outreach Project (CROP): measuring cholinesterase activity and pesticide use in an agricultural community.
    Cotton J; Lewandowski P; Brumby S
    BMC Public Health; 2015 Aug; 15():748. PubMed ID: 26243006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can acetylcholinesterase serve as a target for developing more selective insecticides?
    Lang GJ; Zhu KY; Zhang CX
    Curr Drug Targets; 2012 Apr; 13(4):495-501. PubMed ID: 22280346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Block of neuronal nicotinic acetylcholine receptors by organophosphate insecticides.
    Smulders CJ; Bueters TJ; Vailati S; van Kleef RG; Vijverberg HP
    Toxicol Sci; 2004 Dec; 82(2):545-54. PubMed ID: 15342957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persisting behavioural and electroencephalographic effects of exposure to chlorphenvinphos, an organophosphorous pesticide, in laboratory animals.
    Gralewicz S; Soćko R
    Int J Occup Med Environ Health; 1997; 10(4):375-94. PubMed ID: 9575664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant and acetylcholinesterase response to repeated malathion exposure in rat cerebral cortex and hippocampus.
    Trevisan R; Uliano-Silva M; Pandolfo P; Franco JL; Brocardo PS; Santos AR; Farina M; Rodrigues AL; Takahashi RN; Dafre AL
    Basic Clin Pharmacol Toxicol; 2008 Apr; 102(4):365-9. PubMed ID: 18341513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase.
    Luo C; Leader H; Radic Z; Maxwell DM; Taylor P; Doctor BP; Saxena A
    Biochem Pharmacol; 2003 Aug; 66(3):387-92. PubMed ID: 12907237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating and assessing risks of cholinesterase-inhibiting pesticides: divergent approaches and interpretations.
    Carlock LL; Chen WL; Gordon EB; Killeen JC; Manley A; Meyer LS; Mullin LS; Pendino KJ; Percy A; Sargent DE; Seaman LR; Svanborg NK; Stanton RH; Tellone CI; Van Goethem DL
    J Toxicol Environ Health B Crit Rev; 1999; 2(2):105-60. PubMed ID: 10230391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major intermediates in organophosphate synthesis (PCl3, POCl3, PSCl3, and their diethyl esters) are anticholinesterase agents directly or on activation.
    Segall Y; Quistad GB; Sparks SE; Casida JE
    Chem Res Toxicol; 2003 Mar; 16(3):350-6. PubMed ID: 12641435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans.
    Timchalk C; Nolan RJ; Mendrala AL; Dittenber DA; Brzak KA; Mattsson JL
    Toxicol Sci; 2002 Mar; 66(1):34-53. PubMed ID: 11861971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residues of dimethoate in the liver and AchE activity in blood of rats after exposure to dimethoate, and dimethoate and pyrantel embonate.
    Barski D; Zasadowski A
    Pol J Vet Sci; 2006; 9(1):43-9. PubMed ID: 16573274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current issues in organophosphate toxicology.
    Costa LG
    Clin Chim Acta; 2006 Apr; 366(1-2):1-13. PubMed ID: 16337171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish.
    Dutta HM; Arends DA
    Environ Res; 2003 Mar; 91(3):157-62. PubMed ID: 12648478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective acetylcholinesterase inhibition of the organophosphorous insecticides profenofos, fonofos, and crotoxyphos.
    Nillos MG; Rodriguez-Fuentes G; Gan J; Schlenk D
    Environ Toxicol Chem; 2007 Sep; 26(9):1949-54. PubMed ID: 17705656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rat brain acetylcholinesterase activity: developmental profile and maturational sensitivity to carbamate and organophosphorus inhibitors.
    Mortensen SR; Hooper MJ; Padilla S
    Toxicology; 1998 Jan; 125(1):13-9. PubMed ID: 9585096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase.
    Mazor O; Cohen O; Kronman C; Raveh L; Stein D; Ordentlich A; Shafferman A
    Mol Pharmacol; 2008 Sep; 74(3):755-63. PubMed ID: 18523134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.