These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16833226)

  • 1. Intermolecular interactions on multiwalled carbon nanotubes in reversed-phase liquid chromatography.
    Kwon SH; Park JH
    J Sep Sci; 2006 May; 29(7):945-52. PubMed ID: 16833226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular interactions involved in solute retention on carbon media in reversed-phase high-performance liquid chromatography.
    Jackson PT; Schure MR; Weber TP; Carr PW
    Anal Chem; 1997 Feb; 69(3):416-25. PubMed ID: 9030054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity of amino-, cyano- and diol-bonded silica in reversed-phase liquid chromatography.
    Kim IW; Lee HS; Lee YK; Jang MD; Par JH
    J Chromatogr A; 2001 Apr; 915(1-2):35-42. PubMed ID: 11358260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation parameter models for retention on perfluorinated and fluorinated low temperature glassy carbon stationary phases in reversed-phase liquid chromatography.
    Shearer JW; Ding L; Olesik SV
    J Chromatogr A; 2007 Feb; 1141(1):73-80. PubMed ID: 17188695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical selectivity in micellar electrokinetic chromatography: characterization of solute-micelle interactions for classification of surfactants.
    Yang S; Khaledi MG
    Anal Chem; 1995 Feb; 67(3):499-510. PubMed ID: 7893000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the retention dependence on the physicochemical properties of solutes in reversed-phase liquid chromatographic linear gradient elution based on linear solvation energy relationships.
    Li J; Cai B
    J Chromatogr A; 2001 Jan; 905(1-2):35-46. PubMed ID: 11206804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography.
    Torres-Lapasió JR; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2007 Sep; 1166(1-2):85-96. PubMed ID: 17720177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship.
    Li MS; Wu SC; Shih YH
    J Hazard Mater; 2016 Sep; 315():35-41. PubMed ID: 27152974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.
    Carr PW; Dolan JW; Dorsey JG; Snyder LR; Kirkland JJ
    J Chromatogr A; 2015 May; 1395():57-64. PubMed ID: 25890437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the retention characteristics of aromatic and aliphatic reversed phases for HPLC using linear solvation energy relationships.
    Zhao J; Carr PW
    Anal Chem; 1998 Sep; 70(17):3619-28. PubMed ID: 9737212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laterally attached liquid crystalline polymers as stationary phases in reversed-phase high-performance liquid chromatography. V. Study of retention mechanism using linear solvation energy relationships.
    Gritti F; Félix G; Achard MF; Hardouin F
    J Chromatogr A; 2001 Jul; 922(1-2):51-61. PubMed ID: 11486891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships.
    Bui H; Masquelin T; Perun T; Castle T; Dage J; Kuo MS
    J Chromatogr A; 2008 Oct; 1206(2):186-95. PubMed ID: 18771773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships.
    Redón L; Safar Beiranvand M; Subirats X; Rosés M
    Anal Chim Acta; 2023 Oct; 1277():341672. PubMed ID: 37604624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the delta log P parameter of seiler.
    Abraham MH; Chadha HS; Whiting GS; Mitchell RC
    J Pharm Sci; 1994 Aug; 83(8):1085-100. PubMed ID: 7983591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention characteristics of porous graphitic carbon in subcritical fluid chromatography with carbon dioxide-methanol mobile phases.
    West C; Lesellier E; Tchapla A
    J Chromatogr A; 2004 Sep; 1048(1):99-109. PubMed ID: 15453424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Column selectivity in reversed-phase liquid chromatography. VIII. Phenylalkyl and fluoro-substituted columns.
    Marchand DH; Croes K; Dolan JW; Snyder LR; Henry RA; Kallury KM; Waite S; Carr PW
    J Chromatogr A; 2005 Jan; 1062(1):65-78. PubMed ID: 15679144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of modifiers in subcritical fluid chromatography on retention with porous graphitic carbon.
    West C; Lesellier E
    J Chromatogr A; 2005 Sep; 1087(1-2):64-76. PubMed ID: 16130699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemical interpretation and practice of linear solvation energy relationships in chromatography.
    Vitha M; Carr PW
    J Chromatogr A; 2006 Sep; 1126(1-2):143-94. PubMed ID: 16889784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.