These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 16833351)
1. Dehydrogenation of ethylbenzene with nitrous oxide in the presence of mesoporous silica materials modified with transition metal oxides. Kuśtrowski P; Chmielarz L; Dziembaj R; Cool P; Vansant EF J Phys Chem A; 2005 Jan; 109(2):330-6. PubMed ID: 16833351 [TBL] [Abstract][Full Text] [Related]
2. Catalytic activity of MCM-48-, SBA-15-, MCF-, and MSU-type mesoporous silicas modified with Fe3+ species in the oxidative dehydrogenation of ethylbenzene in the presence of N2O. Kuśtrowski P; Chmielarz L; Surman J; Bidzińska E; Dziembaj R; Cool P; Vansant EF J Phys Chem A; 2005 Nov; 109(43):9808-15. PubMed ID: 16833294 [TBL] [Abstract][Full Text] [Related]
3. Modification of MCM-48-, SBA-15-, MCF-, and MSU-type mesoporous silicas with transition metal oxides using the molecular designed dispersion method. Kuśtrowski P; Chmielarz L; Dziembaj R; Cool P; Vansant EF J Phys Chem B; 2005 Jun; 109(23):11552-8. PubMed ID: 16852417 [TBL] [Abstract][Full Text] [Related]
4. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction. Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136 [TBL] [Abstract][Full Text] [Related]
5. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water. Kim KH; Kim JR; Ihm SK J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401 [TBL] [Abstract][Full Text] [Related]
6. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Jiao F; Frei H Angew Chem Int Ed Engl; 2009; 48(10):1841-4. PubMed ID: 19173364 [TBL] [Abstract][Full Text] [Related]
7. Role of lattice oxygen of metal oxides in the dehydrogenation of ethylbenzene under a carbon dioxide atmosphere. Saito K; Okuda K; Ikenaga NO; Miyake T; Suzuki T J Phys Chem A; 2010 Mar; 114(11):3845-54. PubMed ID: 19719174 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts. Ko JR; Ahn WS J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785 [TBL] [Abstract][Full Text] [Related]
9. Properties of iron-based mesoporous silica for the CWPO of phenol: a comparison between impregnation and co-condensation routes. Xiang L; Royer S; Zhang H; Tatibouët JM; Barrault J; Valange S J Hazard Mater; 2009 Dec; 172(2-3):1175-84. PubMed ID: 19709804 [TBL] [Abstract][Full Text] [Related]
10. Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation. Zhang G; Long J; Wang X; Zhang Z; Dai W; Liu P; Li Z; Wu L; Fu X Langmuir; 2010 Jan; 26(2):1362-71. PubMed ID: 19938803 [TBL] [Abstract][Full Text] [Related]
11. Transition metal complexes on mesoporous silica nanoparticles as highly efficient catalysts for epoxidation of styrene. Tang D; Zhang W; Zhang Y; Qiao ZA; Liu Y; Huo Q J Colloid Interface Sci; 2011 Apr; 356(1):262-6. PubMed ID: 21272888 [TBL] [Abstract][Full Text] [Related]
12. Toluene oxidation on titanium- and iron-modified MCM-41 materials. Popova M; Szegedi A; Cherkezova-Zheleva Z; Mitov I; Kostova N; Tsoncheva T J Hazard Mater; 2009 Aug; 168(1):226-32. PubMed ID: 19269739 [TBL] [Abstract][Full Text] [Related]
13. N2O decomposition by mesoporous silica supported Rh catalysts. Hussain M; Fino D; Russo N J Hazard Mater; 2012 Apr; 211-212():255-65. PubMed ID: 21907485 [TBL] [Abstract][Full Text] [Related]
14. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials. Fan F; Feng Z; Li C Acc Chem Res; 2010 Mar; 43(3):378-87. PubMed ID: 20028121 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of vanadium oxide deposited on thermally stable mesoporous titania. Segura Y; Chmielarz L; Kustrowski P; Cool P; Dziembaj R; Vansant EF J Phys Chem B; 2006 Jan; 110(2):948-55. PubMed ID: 16471628 [TBL] [Abstract][Full Text] [Related]
16. Polyoxomolybdate-stabilized Ru(0) nanoparticles deposited on mesoporous silica as catalysts for aromatic hydrogenation. Boujday S; Blanchard J; Villanneau R; Krafft JM; Geantet C; Louis C; Breysse M; Proust A Chemphyschem; 2007 Dec; 8(18):2636-42. PubMed ID: 18058778 [TBL] [Abstract][Full Text] [Related]
17. Cobalt-modified mesoporous MgO, ZrO2, and CeO2 oxides as catalysts for methanol decomposition. Tsoncheva T; Ivanova L; Minchev C; Fröba M J Colloid Interface Sci; 2009 May; 333(1):277-84. PubMed ID: 19215934 [TBL] [Abstract][Full Text] [Related]
19. A generalized method toward high dispersion of transition metals in large pore mesoporous metal oxide/silica hybrids. Bérubé F; Khadraoui A; Florek J; Kaliaguine S; Kleitz F J Colloid Interface Sci; 2015 Jul; 449():102-14. PubMed ID: 25591825 [TBL] [Abstract][Full Text] [Related]
20. Monolayer binary active phase (Mo-V) and (Cr-V) supported on titania catalysts for the selective catalytic reduction (SCR) of NO by NH3. Bourikas K; Fountzoula C; Kordulis C Langmuir; 2004 Nov; 20(24):10663-9. PubMed ID: 15544399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]