BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16833446)

  • 1. Self-consistent approach for simplifying the molecular interpretation of nonlinear optical and multiphoton phenomena.
    Moad AJ; Simpson GJ
    J Phys Chem A; 2005 Feb; 109(7):1316-23. PubMed ID: 16833446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreducible representation and projection operator application to understanding nonlinear optical phenomena: hyper-Raman, sum frequency generation, and four-wave mixing spectroscopy.
    Lee SH; Wang J; Krimm S; Chen Z
    J Phys Chem A; 2006 Jun; 110(22):7035-44. PubMed ID: 16737251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.
    Tanimura Y; Ishizaki A
    Acc Chem Res; 2009 Sep; 42(9):1270-9. PubMed ID: 19441802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics.
    Simpson GJ
    Chemphyschem; 2004 Sep; 5(9):1301-10. PubMed ID: 15499846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual methods for interpreting optical nonlinearity at the molecular level.
    Wampler RD; Moad AJ; Moad CW; Heiland R; Simpson GJ
    Acc Chem Res; 2007 Oct; 40(10):953-60. PubMed ID: 17713964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and vibrational second-order nonlinear optical properties of protein secondary structural motifs.
    Perry JM; Moad AJ; Begue NJ; Wampler RD; Simpson GJ
    J Phys Chem B; 2005 Oct; 109(42):20009-26. PubMed ID: 16853586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear optical spectroscopy of chiral molecules.
    Fischer P; Hache F
    Chirality; 2005 Oct; 17(8):421-37. PubMed ID: 16082658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of configurations and third-order nonlinear optical properties of methyl silsesquioxanes.
    Shen J; Cheng WD; Wu DS; Li XD; Lan YZ; Zhang H; Gong YJ; Li FF; Huang SP
    J Chem Phys; 2005 May; 122(20):204709. PubMed ID: 15945766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doubly resonant three-wave-mixing spectroscopy of a chiral coupled-chromophore system in solution: coherent two-dimensional optical activity spectroscopy.
    Cheon S; Lee H; Choi JH; Cho M
    J Chem Phys; 2007 Feb; 126(5):054505. PubMed ID: 17302483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.
    Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P
    J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of configurations and third-order nonlinear optical properties of C(36) and C(34)X(2) (X=B,N).
    Li XD; Cheng WD; Wu DS; Lan YZ; Zhang H; Gong YJ; Li FF; Shen J
    J Chem Phys; 2004 Sep; 121(12):5885-92. PubMed ID: 15367016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-molecule approach for determining orientation at isotropic surfaces by nonlinear vibrational spectroscopy.
    Hore DK; Beaman DK; Parks DH; Richmond GL
    J Phys Chem B; 2005 Sep; 109(35):16846-51. PubMed ID: 16853143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A virtual vibrational self-consistent-field method for efficient calculation of molecular vibrational partition functions and thermal effects on molecular properties.
    Hansen MB; Christiansen O; Toffoli D; Kongsted J
    J Chem Phys; 2008 May; 128(17):174106. PubMed ID: 18465909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NLOPredict: visualization and data analysis software for nonlinear optics.
    Moad AJ; Moad CW; Perry JM; Wampler RD; Goeken GS; Begue NJ; Shen T; Heiland R; Simpson GJ
    J Comput Chem; 2007 Sep; 28(12):1996-2002. PubMed ID: 17450566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deduction of structural information of interfacial proteins by combined vibrational spectroscopic methods.
    Wang J; Paszti Z; Clarke ML; Chen X; Chen Z
    J Phys Chem B; 2007 May; 111(21):6088-95. PubMed ID: 17511496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear response theory with relaxation: the first-order hyperpolarizability.
    Norman P; Bishop DM; Jensen HJ; Oddershede J
    J Chem Phys; 2005 Nov; 123(19):194103. PubMed ID: 16321072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order nonlinear susceptibility.
    Kuzyk MG
    J Chem Phys; 2006 Oct; 125(15):154108. PubMed ID: 17059240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles determinations and investigations of the electronic absorption and third-order polarizability spectra of electron donor-acceptor chromophores tetraalkylammonium halide/carbon tetrabromide.
    Shen J; Cheng WD; Wu DS; Huang SP; Hu H; Xie Z
    J Phys Chem A; 2007 Sep; 111(38):9249-54. PubMed ID: 17676721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of the high-frequency vibronic contributions to the 77 K emission spectra of ruthenium-am(m)ine-bipyridyl complexes, their attenuation with decreasing energy gaps, and the implications of strong electronic coupling for inverted-region electron transfer.
    Xie P; Chen YJ; Uddin MJ; Endicott JF
    J Phys Chem A; 2005 Jun; 109(21):4671-89. PubMed ID: 16833808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity-carrying modes important for vibrational polarizabilities and hyperpolarizabilities of molecules: derivation from the algebraic properties of formulas and applications.
    Torii H
    J Comput Chem; 2002 Jul; 23(10):997-1006. PubMed ID: 12116404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.